[size=150]Find the Undo button. [br][br][img][/img][br][br]Click on the image of 3 stacked segments, the Main Menu, to save your work or go to a new page.[br][br][img][/img][/size][br][br]Which tools do the same work as a straightedge?
(or open the applet at [url=https://ggbm.at/cuupdskk]ggbm.at/cuupdskk[/url]).[br][br]Drag each point and each line around to see what happens in the Graphics View on the right.[br][br]Look at the way the points are defined in the Algebra View on the left.[br][br]Explain how each definition is related to the behavior of the corresponding point .
[img][/img][list][*]Draw circle through [math]A[/math] point [math]B[/math].[/*][*]Draw segment [math]CD[/math] not intersecting the circle centered at [math]A[/math].[br][/*][*]Draw point [math]E[/math] not intersecting the circle centered at [math]A[/math] or segment [math]CD[/math].[/*][/list]Select the compass tool and then click on segment [math]CD[/math]. What happens?
Now click on the point [math]E[/math]. What happens?
Make a new segment [math]EF[/math] that is the same length as [math]CD[/math].[br]Make a circle with the same radius as the circle centered at [math]A[/math].[br][br]Explain how the digital compass tool is the same and how it is different from a physical compass.
[list][*]a perpendicular bisector of line segment [math]AB[/math][/*][*]an equilateral triangle[/*][*]a regular hexagon[/*][*]a square[/*][*]a square inscribed in a circle[/*][*]two congruent, right triangles that do not share a side[/*][/list][br]In order for your construction to be successful, it has to be impossible to mess it up by dragging a point. Make sure to test your constructions.
(You can also go to [url=https://www.geogebra.org/geometry]geogebra.org/geometry[/url])[br][br]Click on the word “MORE” and you’ll see some categories of tools, including “Construct” tools.[br][table][tr][td]perpendicular line tool[/td][td]parallel line tool[/td][/tr][tr][td][img][/img][/td][td][img][/img][/td][/tr][/table][br][list][*]Construct a line or a line segment and an additional point that is not on it. Then try the perpendicular line tool and the parallel line tool. Use the move tool to drag some points around, and observe what happens.[/*][*]Use any of the digital tools to create one or more of these figures. Test your constructions by dragging a point.[/*][/list][table][tr][td] [/td][td][math]\odot[/math]parallelogram[br][/td][td] [/td][td] [/td][td] [/td][td] [/td][td] [/td][td] [/td][td] [/td][td] [/td][/tr][tr][td][/td][td][math]\odot[/math]rectangle[br][/td][td][/td][td][/td][td][/td][td][/td][td][/td][td][/td][td][/td][td][/td][/tr][tr][td][/td][td][math]\odot[/math]rhombus[br][/td][td][/td][td][/td][td][/td][td][/td][td][/td][td][/td][td][/td][td][/td][/tr][tr][td][/td][td][math]\odot[/math]square[br][/td][td][/td][td][/td][td][/td][td][/td][td][/td][td][/td][td][/td][td][/td][/tr][/table]