[br]To answer the question, click and drag any of the points B, C, or D and fill up the table for each trial.[br][img][/img][br][br]How will you determine the [math]\angle CBF[/math]? [br]
VISIT MY YOUTUBE CHANNEL FOR SOME EXPLANATION.[url=https://www.youtube.com/watch?v=oFwD051U4VA][br]Tangent Chord Theorem[/url] https://www.youtube.com/watch?v=oFwD051U4VA[br]