[size=150]Use the applet below to explore the effect of transformation defined by the matrix[center][img]https://1.bp.blogspot.com/-K8T28LharqI/X9IAkEosj9I/AAAAAAAAZvI/xmCHgTt_zOYpABgxVUrEyRTyvqEA5G_KACLcBGAsYHQ/s210/scalingmatrixm.png[/img][/center][/size][left][size=150]Drag the sliders to change the values [i]v[sub]x[/sub][/i] and [i]v[sub]y[/sub][/i].[/size][/left]
[size=150]What do you notice? What do you wonder? List any observations you see below.[/size]
[size=150]The matrix[br][center][img]https://1.bp.blogspot.com/-K8T28LharqI/X9IAkEosj9I/AAAAAAAAZvI/xmCHgTt_zOYpABgxVUrEyRTyvqEA5G_KACLcBGAsYHQ/s210/scalingmatrixm.png[/img][/center][/size][size=150]is known as the [i]scaling[/i] matrix. [/size][size=150]The scaling is [i]uniform[/i] if and only if the scaling factors are equal (that is, [i]v[sub]x[/sub] = v[sub]y[/sub][/i]).[/size]