Images. n=24: Biscribed Snub Cube (laevo) and n=32. Their Dual Polyhedrons

[size=85] n=24; [b][url=http://dmccooey.com/polyhedra/BiscribedLsnubCube.html]Biscribed Snub Cube (laevo)[/url][/b][br]Vertices: 24 (24[5])[br]Faces: 38 (8 equilateral triangles + 24 acute triangles + 6 squares)[br]Edges: 60 (24 short + 24 medium + 12 long)[br] →n=38; [i]Dual Solid:[/i] [b][url=http://dmccooey.com/polyhedra/BiscribedRpentagonalIcositetrahedron.html]Biscribed Pentagonal Icositetrahedron (dextro)[/url] [/b]biscribed form[br]Vertices: 38 (32[3] + 6[4])[br]Faces: 24 (irregular pentagons)[br]Edges: 60 (12 short + 24 medium + 24 long)[/size]
Comparison of dual polyhedra
[size=85] n=32; [u][b] [url=http://dmccooey.com/polyhedra/BiscribedPentakisDodecahedron.html]Biscribed Pentakis Dodecahedron[/url][/b][/u] [br][table][tr][td]Vertices:  [/td][td]32  (12[5] + 20[6])[/td][/tr][tr][td]Faces:[/td][td]60  (isosceles triangles)[/td][/tr][tr][td]Edges:[/td][td]90  (60 short + 30 long)[/td][/tr][/table][br]→ [i]dual:[/i] n=60; [b] [url=http://dmccooey.com/polyhedra/BiscribedTruncatedIcosahedron.html]Biscribed Truncated Icosahedron[/url][/b][br][table][tr][td]Vertices:  [/td][td]60  (60[3])[/td][/tr][tr][td]Faces:[/td][td]32  (12 regular pentagons + 20 ditrigons)[/td][/tr][tr][td]Edges:[/td][td]90  (30 short + 60 long)[/td][/tr][/table][/size]

Information: Images. n=24: Biscribed Snub Cube (laevo) and n=32. Their Dual Polyhedrons