Rhombicosidodecahedron (V=60) from Biscribed Pentakis Dodecahedron for the case of trisection of its 8th-order segments(Variant1)

[size=85]A polyhedron is constructed whose V=60 vertices are the points of the trisection of the segments the same length 8th-order(g=8) of the [url=https://www.geogebra.org/m/hczvuvhg]Biscribed Pentakis Dodecahedron[/url]. [br] Geometric Constructions are in [url=https://www.geogebra.org/m/p4a5zccm]Applet[/url]: Series of polyhedra obtained by trisection (truncation) different segments of the original polyhedron, and the resulting polyhedra in [url=https://www.geogebra.org/m/uej4qnte]Applet[/url]: Serie of polyhedra obtained by trisection (truncation) segments of the Biscribed Pentakis Dodecahedron.[br][img][/img][br][/size]
1. Generating Elements of mesh modeling the surfaces of convex polyhedron and its dual image
2. Coloring edges and faces of polyhedra
3. Properties of polyhedra
[size=85] as [url=http://dmccooey.com/polyhedra/Rhombicosidodecahedron.html]Rhombicosidodecahedron[/url][br][table][tr][td]Vertices:  [/td][td]60  (60[4])[/td][/tr][tr][td]Faces:[/td][td]62  (20 equilateral triangles + 30 squares + 12 regular pentagons)[/td][/tr][tr][td]Edges:[/td][td]120[/td][/tr][/table][/size][size=85][br] Dual[br]Vertices: 62 (30[4] + 20[6] + 12[10])[br]Faces: 120 (acute triangles)[br]Edges: 180 (60 short + 60 medium + 60 long)[/size]
[size=85][u]Comparing my images and from sources:[/u] [br][b]Rhombicosidodecahedron-Deltoidal hexecontahedron[/b][br][url=https://en.wikipedia.org/wiki/Rhombicosidodecahedron]https://en.wikipedia.org/wiki/Rhombicosidodecahedron[/url][br][url=http://dmccooey.com/polyhedra/Rhombicosidodecahedron.html]http://dmccooey.com/polyhedra/Rhombicosidodecahedron.html[/url][br][url=https://en.wikipedia.org/wiki/Deltoidal_hexecontahedron]https://en.wikipedia.org/wiki/Deltoidal_hexecontahedron[/url]; [br] [url=http://dmccooey.com/polyhedra/DeltoidalHexecontahedron.html]http://dmccooey.com/polyhedra/DeltoidalHexecontahedron.html[/url][/size]

Information: Rhombicosidodecahedron (V=60) from Biscribed Pentakis Dodecahedron for the case of trisection of its 8th-order segments(Variant1)