7.2 SAS ~ Postulate

[color=#000000]In the applet below, you'll find two triangles.  [br][br]The [b]black angle[/b] in the [/color][color=#38761d][b]green triangle[/b][/color] [b][color=#000000]is congruent to[/color][/b][color=#000000] the [/color][b][color=#000000]black angle[/color][/b][color=#000000] in the [/color][b][color=#ff00ff]pink triangle[/color][/b][color=#000000]. [/color][br][br][color=#000000]In the [/color][color=#38761d][b]green triangle[/b][/color][color=#000000], the [b]black angle is the included angle between sides [/b][/color][b][i][color=#000000]a[/color][/i][color=#000000] and [/color][i][color=#000000]b[/color][/i][/b][color=#000000].  [/color][br][color=#000000]In the [/color][b][color=#ff00ff]pink triangle[/color][/b][color=#000000], the [b]black angle is the included angle between sides [i]ka[/i] and [i]kb[/i][/b].  [/color][br][br][color=#000000]Interact with the applet below for a few minutes. [/color][color=#000000]As you do, be sure to move the locations of the [/color][color=#38761d][b]green triangle's[/b][/color][color=#000000] [b]BIG BLACK VERTICES[/b] and the location of the [b]BIG X[/b].[br][/color][color=#000000]You can also adjust the value of [/color][i][color=#000000]k[/color][/i][color=#000000] by using the slider or by entering a value between 0 & 1. [/color][color=#000000] [br][/color][color=#000000] [/color][br] 
[color=#000000]Notice how these two triangles have 2 pairs of corresponding sides that are in proportion. (After all, as long as [br]a > 0 & b > 0, ka/a = k and kb/b = k, right?  )  [br][br]The [b]BLACK ANGLES INCLUDED[/b] between these two sides [b]ARE CONGRUENT[/b] as well.  [/color][br][br][b][color=#0000ff]From your observations, what can you conclude about the two triangles?  Why can you conclude this?[br]Clearly justify your response!  [/color][/b]

Information: 7.2 SAS ~ Postulate