IM Alg2.6.9 Lesson: Introduction to Trigonometric Functions

[size=150]Suppose there is a point [math]P[/math] on the unit circle at [math](1,0)[/math].[/size][br][img][/img][br]Describe how the [math]x[/math]-coordinate of [math]P[/math] changes as it rotates once counterclockwise around the circle.[br]
Describe how the [math]y[/math]-coordinate of [math]P[/math] changes as it rotates once counterclockwise around the circle.[br]
[size=150]Use the class display, the table from a previous lesson, or the applet to estimate the value of [math]y=\cos\left(\theta\right)[/math] and [math]y=\sin\left(\theta\right)[/math] where [math]\theta[/math] is the measure of an angle in radians.[/size]
Use technology to plot the values of y=cos(θ), where θ is the measure of an angle in radians.
Use technology to plot the values of y=sin(θ), where θ is the measure of an angle in radians.
What do you notice about the two graphs?
Explain why any angle measure between 0 and [math]2\pi[/math] gives a point on each graph.
Could these graphs represent functions? Explain your reasoning.
[size=150]Looking at the graphs of [math]y=\cos\left(\theta\right)[/math] and [math]y=\sin\left(\theta\right)[/math], at what values of [math]\theta[/math] do [math]\cos\left(\theta\right)=\sin\left(\theta\right)[/math]? [br][/size]
Where on the unit circle do these points correspond to?
[size=150]For each of these equations, first predict what the graph looks like, and then check your prediction using the applet at the end of the activity. [br][/size][br][math]y=\cos\left(\theta\right)+\sin\left(\theta\right)[/math]
[math]y=\cos^2\left(\theta\right)[/math]
[math]y=\sin^2\left(\theta\right)[/math]
[math]y=\cos^2\left(\theta\right)+\sin^2\left(\theta\right)[/math]
To enter the symbol for [math]\theta[/math], use the onscreen keyboard which can be accessed through the keyboard [img][/img] icon. You should enter each equation as a function. For example, [math]y=\sin(theta)[/math] can be entered as [math]f(\theta)=\sin(\theta)[/math]. Some examples are given in the applet below.
[size=150]For the equation given, predict what the graph looks like, and then check your prediction using technology: [math]y=\theta+\cos\left(\theta\right)[/math].[/size]
Close

Information: IM Alg2.6.9 Lesson: Introduction to Trigonometric Functions