IM Geo.2.8 Practice: The Perpendicular Bisector Theorem
Each statement is always true.
Select [b]all[/b] statements for which the converse is also always true.
In isosceles triangle DAC, AD is congruent to AC.
[size=150]Kiran knows that the base angles of an isosceles triangle are congruent. [/size][br]What additional information does Kiran need to know in order to show that [math]AB[/math] is a perpendicular bisector of segment [math]CD[/math]?
Han and Priya were making a kite. Han cut out a piece of fabric so that there were 2 short sides of the same length on top and 2 long sides of the same length on the bottom.
Priya cut 2 pieces of wood to go across the diagonals of the kite. They attached the wood like this:[br][img][/img][br][br]Han asked Priya to measure the angle to make sure the pieces of wood were perpendicular. Priya said, “If we were careful about the lengths of the sides of the fabric, we don’t need to measure the angle. It has to be a right angle.”[br]Complete Priya’s explanation to Han.
Prove triangle [math]ADE[/math] is congruent to triangle [math]CBE[/math].
Triangle DAC is isosceles.
What information do you need to show that triangle DBA is congruent to triangle CBA by the Side-Angle-Side Triangle Congruence Theorem?
Write a sequence of rigid motions to take figure [math]CBA[/math] to figure [math]MLK[/math].
Here is a quadrilateral inscribed in a circle.
[size=150]Jada says that it is square because folding it along the horizontal dashed line and then the vertical dashed line gives 4 congruent sides.[/size][br] Do you agree with Jada?