A machinery produces screws with an average length of [math]\mu[/math][math] = 4[/math] [math]in[/math]. The length of the screws is normal distributed with a standard deviation of [math]\sigma = 0.1[/math] [math]in[/math].[br][br]Calculate the percentage of screws which are [br][list][*]shorter than [i]3.8 in[/i][/*][*]longer than [i]4.3 in[/i][/*][*]between [i]3.9 in[/i] and [i]4.1 in[/i][/*][*]shorter than [i]3.8 in[/i] or longer than [i]4.3 in[/i][/*][/list]
[table][tr][td]1.[/td][td][/td][td]Select the [i]Normal Distribution[/i] from the drop-down list.[/td][/tr][tr][td]2.[/td][td][/td][td]Change the parameter [math]\mu[/math] to [code]4[/code], since the mean of the screws is [i]4 in[/i].[/td][/tr][tr][td]3.[/td][td][/td][td]Change the parameter [math]\sigma[/math] to [i]0.1[/i], since the standard deviation of the screws is [i]0.1 in[/i].[/td][/tr][tr][td]4.[/td][td][img]https://wiki.geogebra.org/uploads/thumb/4/4e/Left_sided.svg/24px-Left_sided.svg.png[/img][/td][td]Calculate the probability [math]P(X \le 3.8)[/math] using the [i]Left Sided[/i] button.[/td][/tr][tr][td]5.[/td][td][img]https://wiki.geogebra.org/uploads/thumb/b/b3/Right_sided.svg/24px-Right_sided.svg.png[/img][/td][td]Calculate the probability [math]P(4.3 \le X)[/math] using the [i]Right Sided[/i] button.[/td][/tr][br][tr][td]6.[/td][td][img]https://wiki.geogebra.org/uploads/thumb/0/04/Interval.svg/24px-Interval.svg.png[/img][/td][td]Calculate the probability [math]P(3.9 \le X \le 4.1)[/math] using the [i]Interval[/i] button.[br][/td][/tr][tr][td]7.[/td][td][img]https://wiki.geogebra.org/uploads/thumb/f/f6/Two_tailed.svg/24px-Two_tailed.svg.png[/img][/td][td]Calculate the probability [math]P\left(X\le3.8\right)+P\left(X\ge4.1\right)[/math] using the [i]Two tailed[/i] button.[/td][/tr][/table]