Use the linearization of [math]f(x)=x^2[/math] at [math]3[/math] to approximate [math]\pi^2[/math].
The linearization of [math]f(x)=x^2[/math] at [math]3[/math], which I'll call [math]l_3[/math], is given by [math]l_3\left(x\right)=f'\left(3\right)\cdot\left(x-3\right)+f\left(3\right)=6\left(x-3\right)+9=6x-9[/math]. Thus, [math]\pi^2\approx l_3\left(\pi\right)=6\pi-9[/math]. [br][br]Note with the scientific calculator that [math]\pi^2=9.869\dots[/math] and [math]6\pi-9=9.849\dots[/math]