Applying Transformations to Absolute Value Parent Function

Order of Transformations
The best order in which to apply a series of transformations is[br][br]1. Stretches/Compressions[br]2. Reflections[br]3. Translations
Vertex Form of an Absolute Value Function
Vertex form of an absolute value function is given by[br][br][math]f\left(x\right)=a\left|b\left(x-h\right)\right|+k[/math][br][br]where[br][br]a = Vertical Stretch/Compression[br]b = Horizontal Stretch/Compression[br]k = Vertical Translation[br]h = Horizontal Translation
Graph #1
Use the sliders in the activity above to graph the function[br][br][math]g\left(x\right)=\left|x-5\right|-3[/math][br][br]Describe the series of transformations, in order, that map the parent function to our function g
Graph #2
Use the sliders in the activity above to graph the function[br][br][math]g\left(x\right)=3\left|x+2\right|[/math][br][br]Describe the series of transformations, in order, that map the parent function to our function g
Graph #3
Use the sliders in the activity above to graph the function[br][br][math]g\left(x\right)=\left|2x+5\right|-1[/math][br][br]Describe the series of transformations, in order, that map the parent function to our function g
Graph #4
Use the sliders in the activity above to graph the function[br][br][math]g\left(x\right)=-2\left|4x+4\right|-3[/math][br][br]Describe the series of transformations, in order, that map the parent function to our function g
Close

Information: Applying Transformations to Absolute Value Parent Function