Dit werkblad is ook een deel van een of meer andere GeoGebraboeken. Aanpassingen verschijnen in al deze boeken. Wil je het originele werkblad aanpassen of in de plaats daarvan je eigen kopie van dit boek maken?
Dit werkblad werd gemaakt door '{$1}'. Wil je het originele werkblad wijzigingen of je eigen kopie maken?
Dit werkblad werd aangemaakt door '{$1}'. Je hebt niet de toelating om het te bewerken. Wil je in de plaats daarvan je eigen kopie maken en deze aan het boek toevoegen?
Nacheinander werden die Schnittkurven aller sechs Paarungen allgemein behandelt. Die allen Schnittproblemen gemeinsame Idee ist es, die beiden gegebenen Gleichungen in den Koordinaten x, y und z auf eine Gleichung in nur zwei Koordinaten zurückzuführen, in welcher die eine Koordinate höchstens quadratisch auftritt und die andere zur Parametrisierung der Lösungskurven dient. Die Probleme werden in aufsteigender Komplexität behandelt beginnend mit Schnitten, deren einer Partner eine Kugel ist. Den schwierigsten Fall stellt sodann der Schnitt zweier Kegel dar. Mit wachsender Komplexität steigt auch die erforderliche Rechenleistung erheblich an, sodass die späteren geogebra-Anwendungen womöglich nur auf dem eigenen PC halbwegs zügig ausgeführt werden können.
Der praktische Nutzen sei dahingestellt - mich faszinierte vor allem, dass sogar der Schnitt zweier Kegel allgemein gelöst werden kann :-)
Wenn man die Schnittkurven mit ihren Zylinder- oder Kegelmänteln in die Ebene abrollt, so kann man immerhin zu Demonstrationszwecken passgenaue Modelle aus Papier basteln...
Die angehängte PDF-Datei enthält die Wahl eines geeigneten Koordinatensystems und die Herleitung der Parametrisierung der Lösungskurven. In der [i]Aktivität[/i] kann man sodann die Größe und Lage ([i]genauer den Abstand der Mittelpunkte[/i]) der Kugeln variieren.
Dieser Fall ist in voller Allgemeinheit äußerst rechenintensiv. Beim Hochladen der Variante B musste ich [i]firefox[/i] achtmal (!) bitten zu warten...