Rohrfläche

Auf der Leitlinie wandert der Mittelpunkt eines gedachten Kreises (senkrecht zum Tangentialvektor der Leitlinie) und bildet so ein Rohr.[br]Leitlinie: c(t) = (c1(t),c2(t),c3(t))[br][br]x(u,v) = c1(u) + r (e11(u) cos(v) + e21(u) sin(v))[br]y(u,v) = c2(u) + r (e12(u) cos(v) + e22(u) sin(v))[br]z(u,v) = c3(u) + r (e13(u) cos(v) + e23(u) sin(v))[br]wobei[br]e1 ... Einheitsvektor des Normalvektors (c2', - c1',0) zum Tangentialvektor c'[br]e2 ... Einheitsvektor von e1 x c'

Information: Rohrfläche