
-
3e - Livret GeoGebra
-
1. Fractales
- Arbre de Pythagore - Partie 1 : Graphique
- Arbre de Pythagore - Partie 2 : Graphique 3D
- Triangle de Sierpinski
-
2. Défis constructions (sans logiciel)
- Scratch (introduction)
- Scratch ★ (lignes brisées)
- Scratch ★★★★(blocs)
- Scratch ★★★(lignes brisées, boucles)
-
3. Transformations du plan
- Image d'un point par une homothétie
- Image d'un triangle par une homothétie
-
4. Théorème de Thalès
- Configuration "papillon"
This activity is also part of one or more other Books. Modifications will be visible in all these Books. Do you want to modify the original activity or create your own copy for this Book instead?
This activity was created by '{$1}'. Do you want to modify the original activity or create your own copy instead?
This activity was created by '{$1}' and you lack the permission to edit it. Do you want to create your own copy instead and add it to the book?
3e - Livret GeoGebra
M. RENARD, Sep 21, 2021

3e - Livret Geogebra
Table of Contents
- Fractales
- Arbre de Pythagore - Partie 1 : Graphique
- Arbre de Pythagore - Partie 2 : Graphique 3D
- Triangle de Sierpinski
- Défis constructions (sans logiciel)
- Scratch (introduction)
- Scratch ★ (lignes brisées)
- Scratch ★★★★(blocs)
- Scratch ★★★(lignes brisées, boucles)
- Transformations du plan
- Image d'un point par une homothétie
- Image d'un triangle par une homothétie
- Théorème de Thalès
- Configuration "papillon"
Arbre de Pythagore - Partie 1 : Graphique
Objectif de l'activité
Déterminer la longueur optimale du côté du carré 1 pour l'arbre de Pythagore qui sera affiché en classe.

Zone de travail


1. Crée un curseur
en sélectionnant les paramètres ci-dessous.


2. Crée un segment [AB] de longueur n.
Segment de longueur donnée : Clique pour placer un point, puis saisis la longueur.


3. Construis un carré ABCD.
Polygone régulier : Clique sur les deux premiers sommets, puis saisis le nombres de sommets du polygone.


4. Construis un triangle CDE, rectangle et isocèle en E.
Milieu ou centre : Clique sur une figure pour placer son centre.
Segment : Clique sur les deux extrémités du segment.



5. Construis les carrés de côtés respectifs [DE] et [EC].

6. Reproduis les dernières étapes pour construire un arbre de Pythagore jusqu'aux carrés 8, en réalisant essentiellement la partie ci-dessous.

7. Quelle est la hauteur de ton arbre de Pythagore pour n = 1 ?
Distance ou longueur : Clique sur les deux extrémités d'un segment pour afficher sa mesure.

Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
8. Quelle est la valeur maximale de n pour laquelle la hauteur de l'arbre est inférieure à la hauteur du mur de la salle de classe ?
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
9. Détermine l'aire totale de l'arbre de Pythagore jusqu'aux carrés 3 (on ne comptabilise que l'aire des carrés) lorsque n = 1.
Aire : Clique sur une figure géométrique fermée pour afficher son aire.

Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
10. Détermine l'aire totale de l'arbre de Pythagore jusqu'aux carrés 3 (on ne comptabilise que l'aire des carrés) lorsque n = 10.
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
11. Par quel nombre doit-on multiplier pour obtenir ?
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
12. Compléter la formule suivante : où est l'aire de l'arbre de Pythagore jusqu'aux carrés 3, et n est un nombre entier quelconque.
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Image d'un point par une homothétie
Partie A Je construis

Place un point A et un point O.
Bouton à utiliser : 

Crée un nombre k, variant de 0 à 5.
Aide : Sélectionne le bouton curseur
, puis clique sur la zone graphique, et enfin, saisis 0 pour min et 5 pour max.

Positionne le curseur sur k = 2.
Construis le point A', image du point A par l'homothétie de centre O et de rapport k.
Aide : Sélectionne le bouton homothétie
, puis sélectionne le point A, puis le point O, et enfin, saisis le rapport de l'homothétie : k.

Trace la droite (AA').
Bouton à utiliser : 

Partie B Je verbalise (homothétie dont le rapport est un nombre positif)
Que peux-tu dire des points O, A et A' ?
Dans la fiche de calcul du tableur, calcule (comme ci-dessous) :
- OA' dans la cellule A1
- OA dans la cellule A2
- OA'/OA dans la cellule A3

OA' > OA lorsque :
OA' = OA lorsque :
OA' < OA lorsque :
Partie C Je verbalise (homothétie dont le rapport est un nombre relatif)
Crée un nombre k', variant de -5 à 0.
Positionne le curseur sur k' = -2.
Construis le point A'1, image du point A par l'homothétie de centre O et de rapport k'.
Fais varier les rapports k et k' des homothéties.
Compare les images obtenues à partir des homothéties de rapport k et k'.
Quel est le point commun entre l'homothétie de rapport k (positif) et l'homothétie de rapport k' (négatif) ?
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Quelle est la différence entre l'homothétie de rapport k (positif) et l'homothétie de rapport k' (négatif) ?
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Partie D Je conjecture les étapes de construction sur papier

Sur quel élément géométrique se trouvera le point A', image du point A par une homothétie de centre O et de rapport k quelconque ?
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Si k est positif, comment peut-on calculer la longueur OA' à partir de la longueur OA et du rapport k ?
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Exemple :
On souhaite construire le point B', image d'un point B par l'homothétie de centre O et de rapport 3.
Calculer OB', sachant que OB = 2 cm.
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Sur la zone graphique ci-dessous, construis le point B', image du point B par l'homothétie de centre O et de rapport 3.
Mesure la longueur OB', puis vérifie que cela correspond au résultat trouvé à la question précédente.
Bouton à utiliser : 


Si k est négatif, comment peut-on calculer la longueur OA' à partir de la longueur OA et du rapport k ?
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Exemple :
On souhaite construire le point C', image d'un point C par l'homothétie de centre O et de rapport -4.
Calculer OC', sachant que OC = 5 cm.
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Sur la zone graphique ci-dessous, construis le point C', image du point C par l'homothétie de centre O et de rapport -4.
Mesure la longueur OC', puis vérifie que cela correspond au résultat trouvé à la question précédente.

Configuration "papillon"

Partie A Je représente
1. Reproduis la figure ci-dessus dans laquelle :
- (AO), (BO) et (AB) sont trois droites définies par trois points non alignés A, B et O ;
- M est un point appartenant au segment [AO] ;
- (d) est la droite parallèle à la droite (AB) passant par M ;
- N est le point d'intersection des droites (OB) et (d).

Partie B Je conjecture
2. Dans la fenêtre "tableur", écrire trois formules permettant de calculer les quotients et , en s'aidant de la capture ci-dessous.

3. Déplacer le point M le long de la droite (AO), et notamment à l'extérieur du segment [AO].
Que constate-t-on au niveau des valeurs des trois quotients ?
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
4. À partir de ce que tu as constaté ci-dessus, complète les phrases suivantes :
Les droites (OA) et (OB) sont ...
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
et les droites (MN) et (AB) sont ...
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
On en déduit que :
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Saving…
All changes saved
Error
A timeout occurred. Trying to re-save …
Sorry, but the server is not responding. Please wait a few minutes and then try to save again.