IM Alg1.7.16 Practice: The Quadratic Formula

[size=150]For each equation, identify the values of [math]a[/math], [math]b[/math], and [math]c[/math] that you would substitute into the quadratic formula to solve the equation.[/size] [br][br][math]3x^2+8x+4=0[/math]
[math]2x^2-5x+2=0[/math]
[math]\text{-}9x^2+13x-1=0[/math]
[math]x^2+x-11=0[/math]
[math]\text{-}x^2+16x+64=0[/math]
Use the quadratic formula to show that the given solutions are correct.
[math]x^2+9x+20=0[/math]. The solutions are [math]x=\text{-}4[/math] and [math]x=\text{-}5[/math].
[math]x^2-10x+21=0[/math]. The solutions are [math]x=3[/math] and [math]x=7[/math].
[math]3x^2-5x+1=0[/math]. The solutions are [math]x=\frac{5}{6}\pm\frac{\sqrt{13}}{6}[/math].
[size=150]Select [b]all[/b] the equations that are equivalent to [math]81x^2+180x-200=100[/math].[/size]
[size=150]Two objects are launched upward. Each function gives the distance from the ground in meters as a function of time, [math]t[/math], in seconds.[/size][br][br][table][tr][td]Object A: [math]f(t)=25+20t-5t^2[/math][br][/td][td]Object B: [math]g(t)=30+10t-5t^2[/math][br][/td][/tr][/table]
Use graphing technology to graph each function.
Which object reaches the ground first? Explain how you know.
What is the maximum height of each object?
[size=150]Identify the values of [math]a[/math], [math]b[/math], and [math]c[/math] that you would substitute into the quadratic formula to solve the equation.[br][/size][br][math]x^2+9x+18=0[/math][br]
[math]4x^2-3x+11=0[/math]
[math]81-x+5x^2=0[/math]
[math]\frac{4}{5}x^2+3x=\frac{1}{3}[/math]
[math]121=x^2[/math]
[math]7x+14x^2=42[/math]
On the same coordinate plane, sketch a graph of each function.
[list][*]Function [math]v[/math], defined by [math]v(x)=|x+6|[/math][/*][*]Function [math]z[/math], defined by [math]z(x)=|x|+9[/math][/*][/list]
Close

Information: IM Alg1.7.16 Practice: The Quadratic Formula