[math]a(1)=7,a(n)=a(n-1)-3[/math] for [math]n\ge2[/math]
[math]b(1)=2,b(n)=2\cdot b(n-1)-1[/math] for [math]n\ge2[/math]
[math]c(1)=3,c(n)=10\cdot c(n-1)[/math] for [math]n\ge2[/math]
[math]d(1)=1,d(n)=n\cdot d(n-1)[/math] for [math]n\ge2[/math]
[math]\frac{1}{3}[/math], 1, 3, 9, 27
[size=150]Function[math]f[/math] is defined by[math]f(x)=2x-7[/math] and [math]g[/math] is defined by [math]g(x)=5^x[/math].[br][br][/size]Find [math]f(3),f(2),f(1),f(0[/math]) and [math]f(\text{-}1)[/math].
Find [math]g(3),g(2),g(1),g(0)[/math] and [math]g(\text{-}1)[/math].[br]
For Sequence A, describe a way to produce a new term from the previous term.[br]
For Sequence B, describe a way to produce a new term from the previous term.[br]
Which of these is a geometric sequence? Explain how you know.[br]