[size=100]i) Every plane vector [math]a^{\rightarrow}=\left(a1,a2\right)[/math] can be wrtten as [math]a^{\rightarrow}[/math] = (a[sub]1, [/sub]a[sub]2[/sub]) = a [sub]1[math]i^{\rightarrow}[/math][/sub] +a[sub]2[math]j^{\rightarrow}[/math] and conversely.[br][/sub]ii) Every space vector [math]a^{\rightarrow}[/math] = (a[sub]1[/sub],a[sub]2[/sub],a[sub]3) can be written as [math]a^{\rightarrow}[/math] = (a[sub]1[/sub],a[sub]2[/sub],a[sub]3) = a[sub]1[math]i^{\rightarrow}[/math]+[/sub]a[sub]2[math]j^{\rightarrow}[/math][/sub]+a[sub]3[math]k^{\rightarrow}[/math][/sub][/sub][/sub][br]and conversely. [br][b]Proof: [/b] i) Here, we have L.H.S. = [img][/img] = (a[sub]1[/sub],0) + (0,a[sub]2) = a1(1,0) +a2(0,1) =a [sub]1[math]i^{\rightarrow}[/math][/sub] +a[sub]2[math]j^{\rightarrow}[/math][/sub][/sub][/size][br][sub]= R.H.S. Again, R.H.S. = a [sub]1[math]i^{\rightarrow}[/math][/sub] +a[sub]2[math]j^{\rightarrow}[/math][/sub] = [/sub]a[sub]1[/sub](1,0) +a[sub]2[/sub](0,1) = (a[sub]1[/sub],0) +(0,a[sub]2[/sub]) = (a[sub]1,[/sub]a[sub]2[/sub]) L.H.S. proved. [br][sub]Similarly we can prove the second part of the theorem also.[br][/sub][br][sub][br][/sub]