G.4 - 6 Identifying Trigonometric Ratios

We will use trig ratios (sin, cos, tan) to find missing side lengths in right triangles. In order to do this we need to be good at relating the side lengths and ratios.[br][br]So let's practice!
[img][/img][br]Find cos(25°)
[img][/img][br]Find tan(25°)
[img][/img][br]Find sin(25°)
[img][/img][br]Find cos(A°)
[img][/img][br]Find sin(A°)
[img][/img][br]Find tan(A°)
Close

Information: G.4 - 6 Identifying Trigonometric Ratios