Find the arc length (s) when [math]\theta=180^\circ[/math] and [math]r=1[/math], [math]r=2,[/math], [math]r=3[/math], [math]r=4[/math], and [math]r=5[/math].[br][br][img][/img]
[math]s=\frac{\theta}{360}\cdot2\pi r[/math][br][br]When r = 1, [math]s=\frac{90}{360}\cdot2\pi\left(1\right)=[/math]3.14[br][br]When r = 2, [math]s=\frac{90}{360}\cdot2\pi\left(2\right)=[/math]6.28[br][br]When r = 3, [math]s=\frac{90}{360}\cdot2\pi\left(3\right)=[/math]9.42[br][br]When r = 4, [math]s=\frac{90}{360}\cdot2\pi\left(4\right)=[/math]12.57[br][br]When r = 5, [math]s=\frac{90}{360}\cdot2\pi\left(5\right)=[/math]15.71