Weeks & Adkins p.214 #13

The Problem
[math]ABCD[/math] is a quadrilateral. A straight line parallel to [math]\overline{BD}[/math] meets [math]\overline{AB}[/math] at [math]P[/math] and [math]\overline{AD}[/math] at [math]Q[/math]. The parallel to [math]\overline{AC}[/math] through [math]Q[/math] meets [math]\overline{CD}[/math] at [math]R[/math], and the parallel to [math]\overline{AC}[/math] through [math]P[/math] meets [math]\overline{BC}[/math] at [math]S[/math]. Prove that [math]\overline{RS}[/math] is parallel to [math]\overline{QP}[/math].
Diagram
Explore
In the diagram, drag [math]A[/math], [math]B[/math], [math]C[/math], or [math]D[/math] around to change the shape of the given quadrilateral.[br][br]You may also drag [math]P[/math] along [math]\overline{AB}[/math] and [math]Q[/math], [math]R[/math], and [math]S[/math] will move with it, according to the constructions given above.
Prove
From the setup of this diagram, we are given:[br][math]\overline{PQ}\parallel\overline{BD}[/math][br][math]\overline{PS}\parallel\overline{AC}[/math][br][math]\overline{QR}\parallel\overline{AC}[/math][br][br]We want to prove:[br][math]\overline{PQ}\parallel\overline{SR}[/math]
How can this be proven?
Follow-up Questions
For which types of [math]ABCD[/math] can [math]PQRS[/math] be a rhombus?
For which types of [math]ABCD[/math] can [math]PQRS[/math] be a rectangle?
Close

Information: Weeks & Adkins p.214 #13