Since we are given [math]\overline{PQ}\parallel\overline{BD}[/math], we know, by applying the Side-Splitter Theorem to [math]\triangle ABD[/math], that [math]\overline{PQ}[/math] divides [math]\overline{AB}[/math] and [math]\overline{AD}[/math] proportionally: [math]\frac{AP}{PB}=\frac{AQ}{QD}[/math].[br][br]In [math]\triangle ADC[/math], since [math]\overline{QR}\parallel\overline{AC}[/math], by the Side-Splitter Theorem, [math]\overline{QR}[/math] divides [math]\overline{AC}[/math] and [math]\overline{CD}[/math] proportionally: [math]\frac{AQ}{QD}=\frac{CR}{RD}[/math].[br][br]In [math]\triangle ABC[/math], since [math]\overline{PS}\parallel\overline{AC}[/math], by the Side-Splitter Theorem, [math]\overline{PS}[/math] divides [math]\overline{AB}[/math] and [math]\overline{BC}[/math] proportionally: [math]\frac{AP}{PB}=\frac{CS}{SB}[/math].[br][br]By the transitive property of equality, we therefore have that [math]\frac{CS}{SB}=\frac{CR}{RD}[/math]. In other words, in [math]\triangle BCD[/math], we have that [math]\overline{RS}[/math] divides [math]\overline{BC}[/math] and [math]\overline{CD}[/math] proportionally. In a triangle, a line that divides two sides proportionally is parallel to the third side, so [math]\overline{RS}\parallel\overline{BD}[/math][br][br]Finally, since two lines parallel to the same line are parallel to each other, as [math]\overline{PQ}\parallel\overline{BD}[/math] and [math]\overline{RS}\parallel\overline{BD}[/math], we reach the conclusion [math]\overline{PQ}\parallel\overline{RS}[/math].[br][br]Note: Since two lines parallel to the same line are parallel to each other, as [math]\overline{PS}\parallel\overline{AC}[/math] and [math]\overline{QR}\parallel\overline{AC}[/math], we have [math]\overline{PS}\parallel\overline{QR}[/math], which means [math]PQRS[/math] will always be a parallelogram, since both pairs of opposite sides are parallel.