[size=150][list=1][b][*]Check the boxes to reveal the lengths of the fishing rod and fishing line.[/*][*]Check the box to reveal the Ratio[/*][*]Click "Take a Picture"[br][/*][*]Change the length of the fishing rod using the [color=#ff0000]RED X[/color][/*][/b][/list][/size][size=150][color=#9900ff][b]What do you notice about the ratio [math]\frac{Opposite}{Hypotenuse}[/math][/b][/color][/size] [b][color=#9900ff][size=150]for 30º ?[/size][/color][/b]
[list][b][/b][*][b][size=150][color=#9900ff][math]\frac{Opposite}{Hypotenuse}[/math][/color] is called the SINE ratio.[/size][color=#9900ff][/color][/b][/*][/list][b][color=#9900ff][br]Calculate[/color][i][size=200] sin(30) [/size][/i][color=#9900ff]using a calculator:[/color][/b]
[size=200][b][color=#ff0000]---------------------------------------------------------[br][/color][color=#0000ff] IF you do not get[/color] 1/2[/b][b][color=#0000ff] or [/color]0.5[color=#0000ff],[/color][/b][color=#0000ff] ask your teacher for [br] help getting your calculator to [b]DEGREES[/b].[br][/color][b][color=#ff0000]---------------------------------------------------------[/color][/b][/size][br]
[size=150][list=1][*]Use the [color=#ff0000]RED DOT [/color]to change the angle.[br][br][/*][*]Click "Take a Picture"[br][br][/*][*][b]Change the length of the fishing rod [/b][color=#ff0000](without changing the angle)[/color][b].[/b][/*][/list][/size][br][size=150][color=#9900ff][b]What do you notice about the ratio [math]\frac{Opposite}{Hypotenuse}[/math][/b][/color][/size] [b][color=#9900ff][size=150]for you new angle?[/size][/color][/b]
[size=150][color=#9900ff]Calculate[/color][i][size=200] sin(___) [/size][/i][color=#9900ff]for your new angle using a calculator:[/color][/size]
[b][size=200]Change the length of the fishing rod.[br][br][/size][/b][size=150][b][color=#9900ff]What do you notice about the [/color][size=200]cos[/size][color=#9900ff] ratio [/color][/b][/size] [b][color=#9900ff][size=150]?[/size][/color][/b]
[size=200][b]cos[/b][color=#9900ff] is called the COSINE ratio.[br][/color][/size][color=#9900ff][br][size=150]Calculate[/size][/color][i][size=200] cos(___) [/size][/i][size=150][color=#9900ff]for your angle using a calculator:[/color][/size]
[color=#9900ff][b][size=150]Which ratio is COSINE (cos) ?[/size][/b][/color]
[b][size=200]Change the length of the fishing rod.[/size][/b][br][size=150][b][color=#9900ff][br]What do you notice about the [/color][size=200]tan[/size][color=#9900ff] ratio [/color][/b][/size] [b][color=#9900ff][size=150]?[/size][/color][/b]
[size=200][b]tan[/b][color=#9900ff] is called the TANGENT ratio.[br][/color][/size][color=#9900ff][br][size=150]Calculate[/size][/color][i][size=200] tan(___) [/size][/i][size=150][color=#9900ff]for your angle using a calculator:[/color][/size]
[color=#9900ff][b][size=150]Which ratio is TANGENT (tan) ?[/size][/b][/color]
[size=200][color=#ff0000][b] >> Write this down! <<[/b][/color][/size]
[b][u]Strategy:[/u][/b][br]1) label the sides of the triangle (hypotenuse, adjacent, opposite)[br]2) write the ratio for the appropriate ratio[br] (reduce the fraction if necessary)[br]3) solve the puzzle
[b]IXL Review[/b] - [url=https://www.ixl.com/math/geometry/trigonometric-ratios-in-similar-right-triangles][color=#9900ff][b][size=150]Trigonometric ratios in similar right triangles[/size][/b][/color][/url][b][size=150]>> Earn 50 points[/size][u][br][br]Strategy:[/u][/b][br]0) locate the corresponding angle in the triangle [u]with[/u] side measurements.[br]1) label the sides of the triangle (hypotenuse, adjacent, opposite)[br]2) write the ratio for the appropriate ratio[br] (reduce the fraction if necessary)