Section 5.3 Amplitude , Period and Phaseshift

[u][color=#0000ff][b]Shifted sine and cosine curves.[br][/b][/color][br][/u][math]f\left(x\right)=asink\left(x-b\right)[/math][color=#980000] and [/color][math]f\left(x\right)=acosk\left(x-b\right)[/math][list][*]The[b] amplitude[/b] is the maximum distance from the midline (horizontal axis) to the peak or trough of the wave.[color=#980000][br][/color][/*][/list][b][color=#0000ff]      Amplitude =[/color][/b][math]\left|a\right|[/math][br][list][*]The [b]period[/b] is the [b]length of one full cycle[/b] of the wave (how long it takes to repeat).[br][/*][/list][b][color=#0000ff]     Period[/color]=[/b][math]\frac{2\pi}{k}[/math][br][list][*]The [b]phase shift[/b] is the [b]horizontal shift[/b] of the graph (left or right), based on the expression inside the function. [br][/*][/list][color=#0000ff][b]     Phase shift = [/b][/color]b[br][br][color=#980000]In the GeoGebra applet Input values for a , b and c and observe the amplitude , phase shift and period[/color]
Q1
Find the amplitude, phase shift and period for the function[math]y=-2sin\left(x-\frac{\pi}{6}\right)[/math]
Q2
Find the amplitude , period and phase shift of [br][math]y=\frac{3}{4}cos\left(2x+\frac{2\pi}{3}\right)[/math]
Закрити

Інформація: Section 5.3 Amplitude , Period and Phaseshift