Singulärwertzerlegung ℝ² ³- Singular value decomposition

Zu lösen ist A x = b mit[br]A ={{1, 1, 1},{1, 1, 0}} b ={{3},{2}}[br]Die Matrix A hat vollen Zeilenrang r.[br][br][list][*]Left-Right-Pseudo-Inverse [/*][*]JordanDiagonalization JD[/*][*]Basis Matrix of Eigen-Vectors JD(1)[/*][*]Gram-Schmidt-Orthogonalization - CAS-Function gs()[br]in Row-Vector-Form[/*][*]Σ Matrix sqrt of Eigenvalues JD(2)[br][/*][*]U[sup]T[/sup] A V = Σ [br](23) [size=85]due to Gram-Schmidt with row vectors - U,V numeric, U3,V3 symbolic[/size][/*][*]Solve [math]\large \mathbb{L} = V^{T}\; Σ^{\minus1}\; U \cdot b [/math][/*][/list][br][br]

Information: Singulärwertzerlegung ℝ² ³- Singular value decomposition