IM Geo.3.8 Lesson: Are They All Similar?
[img][/img][br][br]Are these rectangles similar? Explain how you know.
[size=150]Tyler wrote a proof that all rectangles are similar. Make the image Tyler describes in each step in his proof. Which step makes a false assumption? Why is it false?[/size][br][br][list][*]Draw 2 rectangles. Label one [math]ABCD[/math] and the other [math]PQRS[/math].[/*][*]Translate rectangle [math]ABCD[/math] by the directed line segment from [math]A[/math] to [math]P[/math]. [math]A'[/math] and [math]P[/math] now coincide. The points coincide because that’s how we defined our translation.[/*][*]Rotate rectangle [math]A'B'C'D'[/math] by angle [math]D'A'S[/math]. Segment [math]A''D''[/math] now lies on ray [math]PS[/math]. The rays coincide because that’s how we defined our rotation.[/*][*]Dilate rectangle [math]A''B''C''D''[/math] using center [math]A''[/math] and scale factor [math]\frac{PS}{AD}[/math]. Segments [math]A'''D'''[/math] and [math]PS[/math] now coincide. The segments coincide because A'' was the center of the rotation, so [math]A''[/math] and [math]P[/math] don’t move, and since [math]D''[/math] and [math]S[/math] are on the same ray from [math]A''[/math], when we dilate [math]D''[/math] by the right scale factor, it will stay on ray [math]PS[/math] but be the same distance from [math]A''[/math] as [math]S[/math] is, so [math]S[/math] and [math]D'''[/math] will coincide.[/*][*]Because all angles of a rectangle are right angles, segment [math]A'''B'''[/math] now lies on ray [math]PQ[/math]. This is because the rays are on the same side of [math]PS[/math] and make the same angle with it. (If [math]A'''B'''[/math] and [math]PQ[/math] don’t coincide, reflect across [math]PS[/math] so that the rays are on the same side of [math]PS[/math].)[/*][*]Dilate rectangle [math]A'''B'''C'''D'''[/math] using center [math]A'''[/math] and scale factor [math]\frac{PQ}{AB}[/math]. Segments [math]A''''B''''[/math] and [math]PQ[/math] now coincide by the same reasoning as in step 4.[/*][*]Due to the symmetry of a rectangle, if 2 rectangles coincide on 2 sides, they must coincide on all sides.[/*][/list][*][/*]
Choose one statement from the list. Decide if it is true or not.
[size=150]Statements:[br][list=1][*][size=150]All equilateral triangles are similar.[/size][/*][*][size=150]All isosceles triangles are similar.[/size][/*][*][size=150]All right triangles are similar.[/size][/*][*][size=150]All circles are similar.[/size][/*][/list][/size][br]If it is true, write a proof. If it is not, provide a counterexample.
Repeat with another statement.[br]
Here is an x by x+1 rectangle and a 1 by x rectangle.
They are similar. What are the possible dimensions of these golden rectangles? Explain or show your reasoning.
IM Geo.3.8 Practice: Are They All Similar?
This is an invalid proof that all isosceles triangles are similar.
[list=1][*]Draw 2 isosceles triangles [math]ABC[/math] and [math]DEF[/math] where [math]AC=BC[/math] and [math]DF=EF[/math].[/*][*]Dilate triangle [math]ABC[/math] to a new triangle [math]A'B'C'[/math] using center [math]C[/math] and scale factor [math]\frac{DF}{AC}[/math] so that [math]A'C=B'C=DF=EF[/math].[/*][*]Translate by directed line segment [math]CF[/math] to take [math]A'B'C[/math] to a new triangle [math]A''B''F[/math]. Since translation preserves distance, [math]A''F=A'C=DF[/math] and [math]B''F=B'C=EF[/math].[/*][*]Since [math]A''F=DF[/math], we can rotate using center [math]F[/math] to take [math]A''[/math] to [math]D[/math].[/*][*]Since [math]B''F=EF[/math], we can rotate using center [math]F[/math] to take [math]B''[/math] to [math]E[/math].[/*][*]We have now established a sequence of dilations, translations, and rotations that takes [math]A[/math] to [math]D[/math], [math]B[/math] to [math]E[/math], and [math]C[/math] to [math]F[/math], so the triangles are similar.[/*][/list][br]Explain which step is invalid and why.
Which statement provides a valid justification for why all circles are similar?
Which pair of polygons is similar?
[size=150]Select [b]all [/b]sequences of transformations that would show that triangles [math]ABC[/math] and [math]AED[/math] are similar. The length of [math]AC[/math] is [math]6[/math] units.[br][br][img][/img][/size]
Determine if each statement must be true, could possibly be true, or definitely can't be true. Explain or show your reasoning.
Two equilateral triangles are similar.[br]
An equilateral triangle and a square are similar.
Find a sequence of rigid transformations and dilations that takes square [math]EFGH[/math] to square [math]ABCD[/math].[br][br][img][/img]
Select [b]all [/b]true statements given that angle [math]AED[/math] is congruent to angle [math]ABC[/math].[br][br][img][/img][br]