In the space below, please enter your: [br]1. First Name[br]2. Last Name[br]3. Group Number
[color=#000000]The applet below illustrates how to plot points whose coordinates are written in [b]POLAR FORM[/b]. [br]You can adjust the values of [/color][color=#0000ff][b]r[/b][/color][color=#000000] and [/color][color=#980000][b]theta[/b][/color][color=#000000] by using the sliders or the input boxes. [br](This grapher will only accept [/color][color=#980000][b]theta[/b][/color][color=#000000] values ranging from [/color][color=#980000][b]-2pi to 2pi[/b][/color][color=#000000]). [br][br]Slide the [b]black slider[/b] to illustrate how polar coordinates are plotted. [br][/color][br][color=#000000]Interact with this applet for a few minutes, then answer the questions that follow. [br][/color]
1) Plot the following points using the calculator above: (3, pi/2) and (-3, 3pi/2). What do you notice?
2) Come up with a different set of polar coordinates for the location given in the first question? If so, list it/them!
[br][br][b]POLAR COORDINATE representations of points in the coordinate plane are NOT UNIQUE! [/b] There are infinitely many ways to express a location using polar coordinates. [b]Yet, there is only 1 way to express a point's location using RECTANGULAR COORDINATES (x, y)! [/b]
Use the interactive applet below that will allow you to plot polar functions of the form [math]\left(r,\theta\right)[/math]and answer the question 3 below the applet. [br][br]Try entering different functions into the input box in the top left hand corner. I would suggest looking at functions like[math]r=\sin(a\theta)[/math] ,[math]r=p-\cos(a\theta)[/math] ,[math]r=a\theta[/math] where [math]a,p\in\mathbb{R}[/math].[br][br]You may need to use the [math]\alpha[/math] symbol on the right [math]\theta[/math] of the input box to insert a [math]\theta[/math] in your function. When you have typed in your function press enter, you can then move the slider (in blue) to vary the size of [math]\theta[/math] .
3) What generalizations can you make from what you have discovered?[br][br]Look specifically at the curve with the equation [math]r=a\left(p+qcos\left(\theta\right)\right)[/math] where [math]p\ge q[/math][br][list][*]What if [math]p=q?[/math][br][/*][*]What if [math]p\ge2q[/math]?[br][/*][*]What if[math]q\le p\le2q[/math]?[/*][/list]