The sliders for [i]A[/i], [i]B[/i], [i]C[/i], and [i]D[/i] can be used to explore the effect of the parameters [i]A[/i], [i]B[/i], [i]C[/i], and [i]D[/i] on the graph of [i]y[/i] = [i]A [/i]sin( [i]B[/i]([i]x[/i] - [i]C[/i])) + [i]D[/i] or y = [i]A [/i]sin( [i]B[/i]([i]x[/i] - [i]C[/i])) + [i]D[/i].[br][br]Input [i]g[/i]([i]x[/i]) = sin([i]x[/i]) or [i]g[/i]([i]x[/i]) = cos([i]x[/i]). The red graph is the graph of [i]y[/i] = sin ([i]x[/i]) or [i]y[/i] = cos([i]x[/i]) and remains fixed.[br][br]The black graph is the graph of i]y[/i] = [i]A [/i]sin( [i]B[/i]([i]x[/i] - [i]C[/i])) + [i]D[/i] or y = [i]A [/i]sin( [i]B[/i]([i]x[/i] - [i]C[/i])) + [i]D[/i].and will change as the values of [i]A[/i], [i]B[/i], [i]C[/i], or [i]D[/i] are changed.