[size=150]Which statement is true about a translation?[/size]
[size=150]Select all the points that stay in the same location after being reflected across line [math]l[/math].[br][img][/img][/size]
[size=150]Lines[math]l[/math] and [math]m[/math] are perpendicular. A point [math]Q[/math] has this property: rotating [math]Q[/math] 180 degrees using center [math]P[/math] has the same effect as reflecting [math]Q[/math] over line [math]m[/math]. Give two possible locations of [math]Q[/math].[/size]
Do all points in the plane have this property?[br]
[size=150]Two distinct lines, [math]l[/math] and [math]m[/math], are each perpendicular to the same line [math]n[/math]. [/size][br][br]What is the measure of the angle where line [math]l[/math] meets line [math]n[/math]?[br]
What is the measure of the angle where line [math]m[/math] meets line [math]n[/math]?[br]