[size=85] The number of particles on the surface of the sphere is the same. They are placed according to the [color=#ff0000][i]maximum[/i][/color] [b]Distance Sum[/b] [i][b]principle[/b][/i]. The "[b][i]measure[/i][/b]" of this distribution is the [b]p[/b]-[b][i]average distance between these particles[/i] on the unit sphere[/b]. Here, using the example n=16, it is shown, that there are at least two such [b][color=#ff0000]extreme distributions[/color][/b]:[br][color=#1e84cc][b] p1[/b][/color] = 1.408 486 535 365 533; [color=#6aa84f][b]p2[/b][/color] = 1.408 492 668 681 228.[br] These two distributions are obtained here by a different choice of initial settings-distributions for a further iterative procedure.[/size]
[size=85][b][color=#1e84cc]p1[/color][/b]=1.408 486 535 365 533; Σ[sub]1[/sub]=8, Σ[sub]2[/sub]=8, Σ[sub]3[/sub]=16, Σ[sub]4[/sub]=8[br][b][color=#6aa84f]p2[/color][/b]=1.408 492 668 681 228; Σ[sub]1[/sub]=6, Σ[sub]2[/sub]=12, Σ[sub]3[/sub]=12, Σ[sub]4[/sub]=12[/size]
[size=85][b][color=#1e84cc]p1[/color][/b]=1.408 486 535 365 533; Σ[sub]1[/sub]=8, Σ[sub]2[/sub]=8, Σ[sub]3[/sub]=16, Σ[sub]4[/sub]=8[br][b][color=#6aa84f]p2[/color][/b]=1.408 492 668 681 228; Σ[sub]1[/sub]=6, Σ[sub]2[/sub]=12, Σ[sub]3[/sub]=12, Σ[sub]4[/sub]=12[/size]