[table][br][tr][br][td]English[/td][br][td]Japanese[/td][br][td]Korean[/td][br][td]Chinese Simplified[/td][br][/tr][br][tr][br][td]Geometric Sequence[/td][br][td]等比数列[/td][br][td]등비 수열[/td][br][td]等比数列[/td][br][/tr][br][tr][br][td]nth Term[/td][br][td]n番目の項[/td][br][td]n번째 항[/td][br][td]第n项[/td][br][/tr][br][tr][br][td]Geometric Series[/td][br][td]等比級数[/td][br][td]등비 급수[/td][br][td]等比级数[/td][br][/tr][br][tr][br][td]Sum of the First n Terms[/td][br][td]最初のn項の和[/td][br][td]첫 n 항의 합[/td][br][td]前n项和[/td][br][/tr][br][tr][br][td]Convergence[/td][br][td]収束[/td][br][td]수렴[/td][br][td]收敛[/td][br][/tr][br][tr][br][td]Divergence[/td][br][td]発散[/td][br][td]발산[/td][br][td]发散[/td][br][/tr][br][tr][br][td]Exponential Growth[/td][br][td]指数関数的成長[/td][br][td]지수 성장[/td][br][td]指数增长[/td][br][/tr][br][tr][br][td]Exponential Decay[/td][br][td]指数関数的減少[/td][br][td]지수 감소[/td][br][td]指数衰减[/td][br][/tr][br][tr][br][td]Common Ratio[/td][br][td]公比[/td][br][td]공비[/td][br][td]公比[/td][br][/tr][br][tr][br][td]Sigma Notation[/td][br][td]シグマ記法[/td][br][td]시그마 표기법[/td][br][td]Σ表示法[/td][br][/tr][br][tr][br][td]Sum to Infinity[/td][br][td]無限大への和[/td][br][td]무한대까지의 합[/td][br][td]无穷级数的和[/td][br][/tr][br][/table][br]
[table][br][tr][br] [td][b]Factual Inquiry Questions[/b][br] [list][br] [*]What defines a geometric sequence, and how is the nth term of a geometric sequence calculated?[br] [*]How is the sum of the first n terms of a geometric series determined?[br] [/list][br] [/td][br] [td][b]Conceptual Inquiry Questions[/b][br] [list][br] [*]Why does a geometric series converge or diverge, and what criteria determine this behavior?[br] [*]How can the concept of geometric sequences and series be applied to model exponential growth or decay in real-world scenarios?[br] [/list][br] [/td][br] [td][b]Debatable Inquiry Questions[/b][br] [list][br] [*]Is the study of geometric sequences and series more relevant to theoretical mathematics or to practical applications in fields such as finance and physics?[br] [*]Can the principles of geometric sequences be effectively used to understand complex phenomena in nature, such as population dynamics or the spread of diseases? How?[br] [*]How might advancements in technology and computational methods impact the application and significance of geometric sequences and series in solving real-world problems?[br] [/list][br] [/td][br][/tr][br][/table][br]
Exploration Title: The Great Geometric Quest[br][br]Objective:[br]Embark on a quest to unlock the secrets of geometric sequences and series. Use the given applet to uncover the hidden patterns and sum up your findings![br][br]Mission Steps:[br][br]1. Sequence Sleuth:[br] - Find the 10th term in the sequence with a first term of 3 and a common ratio of 2.[br] - Predict what the 100th term might be and discuss the practicality of its magnitude.[br][br]2. Sum Search:[br] - Calculate the sum of the first 10 terms of the geometric sequence from step 1.[br] - Hypothesize about the sum of the first 100 terms. How does it compare to the 100th term alone?[br][br]3. Ratio Riddle:[br] - For the geometric sequence 5, 10, 20, ..., deduce the common ratio without using the applet.[br] - Calculate the 15th term and the sum of the first 15 terms manually, then check with the applet.[br][br]Questions for Investigation:[br][br]1. Real-life Relevance:[br] - How can understanding geometric sequences help in real-life scenarios like finance (interest rates) or computer science (data storage)?[br][br]2. Series Saturation:[br] - Is there a limit to the sum of a geometric series? Experiment with different ratios (less than 1, equal to 1, greater than 1) to find out.[br][br]3. Pattern Pursuit:[br] - Can you create a geometric sequence that alternates between positive and negative without changing the common ratio?[br][br]Engagement Activities:[br][br]- "Sequence Scramble": Given the 5th and 9th terms of a geometric sequence, work backward to find the first term and common ratio.[br]- "Sum Sprint": Challenge each other to find the sum of the first 'n' terms of a given sequence as fast as possible.[br][br]Through this investigation, become the master of multiplication patterns and understand how simple ratios build complex sequences and staggering sums.[br]
Watch through these two videos before attempting the questions
Alternatively, if you feel confident with the theory, watch these brief videos with worked examples of exam-style questions. [br]Geometric sequences 1 [url=https://youtu.be/JwNdNSgq4uI]https://youtu.be/JwNdNSgq4uI[/url] Geometric sequences 2 [url=https://youtu.be/_f1k58Hyy1c]https://youtu.be/_f1k58Hyy1c[/url] Geometric sequences - Harder [url=https://youtu.be/2uEVctIHihg]https://youtu.be/2uEVctIHihg[/url] Geometric sequences - Sum to infinity [url=https://youtu.be/Jpm1F9ifMRg]https://youtu.be/Jpm1F9ifMRg[/url] Geometric sequences - Sum to infinity past paper question [url=https://youtu.be/YAR_epDxhec]https://youtu.be/YAR_epDxhec[/url] Sigma notation [url=https://youtu.be/tIkJNLWAbJs]https://youtu.be/tIkJNLWAbJs[/url]
If the first term of a geometric sequence is 3 and the common ratio is 4, what is the 4th term?
If the first term is 95, and the third term is 380. Find the sum to 5th term.
Testing understanding with exam style questions