[size=150]Select [b]all[/b] the expressions that are perfect squares.[/size]
How are the contents of the three diagrams alike?
[size=150]This diagram represents [math](\text{term_1 + term_2})^2[/math]. [/size][br][center][img][/img][/center][br]Describe your observations about cells 1, 2, 3, and 4.
Rewrite the perfect-square expression [math]\left(n+7\right)^2[/math] in standard form: [math]ax^2+bx+c[/math].[br]
Rewrite the perfect-square expression [math]\left(5-m\right)^2[/math] in standard form: [math]ax^2+bx+c[/math].[br]
Rewrite the perfect-square expression [math]\left(h+\frac{1}{3}\right)^2[/math] in standard form: [math]ax^2+bx+c[/math].[br]
How are the [math]ax^2[/math], [math]bx[/math], and [math]c[/math] of a perfect square in standard form related to the two terms in [math](\text{term_1 + term_2})^2[/math]?[br]
[math]\left(x-1\right)^2=4[/math]
[math]\left(x+5\right)^2=89[/math]
[math]\left(x-2\right)^2=0[/math]
[math]\left(x+11\right)^2=121[/math]
[math]\left(x-7\right)^2=\frac{64}{49}[/math]
[size=150]Explain or show why the product of a sum and a difference, such as [math]\left(2x+1\right)\left(2x-1\right)[/math], has no linear term when written in standard form.[/size]
[size=150]To solve the equation [math](x+3)^2=4[/math], Han first expanded the squared expression.[br][br]Here is his incomplete work:[/size][br][math]\begin{align}(x+3)^2&=4\\ (x+3)(x+3)&=4\\ x^2+3x+3x+9&=4\\ x^2+6x+9&=4 \end{align}[/math][br][br]Complete Han’s work and solve the equation.
[size=150]Jada saw the equation [math]\left(x+3\right)^2=4[/math] and thought, “There are two numbers, 2 and -2, that equal 4 when squared. This means [math]x+3[/math] is either 2 or it is -2. I can find the values of [math]x[/math] from there.”[/size][br][br]Use Jada’s reasoning to solve the equation.
Can Jada use her reasoning to solve [math]\left(x+3\right)\left(x-3\right)=5[/math]? Explain your reasoning.[br]