Assignment 14:Net of cone

Introduction
A cone is a three-dimentional geometric shape that tapers smoothly from a flat base to a point called the vertex. A cone is like a pyramid. But it has a circular base and curved face.
Objectives
To Observe the net of cone.
User Guideline
Study the given figure, Drag the cone.[br]choose slide and click it.[br]Observe the net of cone. What do you notice about that?
Questions
1. Study the net of solid and which is the name of solid fromed by given net?[br]Ans:...[br]2. What is the name of base shape in this figure?[br]Ans:...[br][br]
Tick the best answer.
1.Study the given figure. Which is the name of solids by given net?
2. Have you seen circular arc in net of cone?
Construction Protocal
Firstly we open GGB applet.[br]Then choose algebra , 2D and 3D perspectives.[br]1.Take a slider t.[br](minimum=0, maximum=1)[br]Use input bar and follow these rule and type given terms then choose enter.[br]2. f= PerpendicularLine((1, 0, 0), xOyPlane)[br]3.A= Point(f)[br]4.B= Intersect(xAxis, f)[br]5.C=Intersect(xAxis, yAxis)[br]6. g=Segment(C, A)[br]7.[math]\alpha[/math]=Angle(B, C, A)[br]8. a=Cone(B, A, 1)[br]9.A'= Rotate(A, t α, yAxis)[br]10. h= PerpendicularLine(A', xOyPlane)[br]11.D=Intersect(h, xOyPlane)[br]12.d=Distance(B, C)[br]13.[math]\beta[/math]=2(π d) / Distance(D, C)[br]14.C'= Rotate(C, β / 2, h)[br]15. C'_1=Rotate(C, (-β) / 2, h)[br]16.e=CircumcircularArc(C', C, C'_1[br]17.i=Distance(A', D)[br]18.j=Distance(D, C')[br]19.k=x(A')[br]20.[math]\phi[/math]=t π[br]21.m=Curve((k - j cos(u β / 2)) cos(ϕ), j sin(u β / 2), (k - j cos(u β / 2)) sin(ϕ), u, -1, 1)[br]22.l=Surface((k - v j cos(u β / 2)) cos(ϕ) - (1 - v) i sin(ϕ), v j sin(u β / 2), (1 - v) i cos(ϕ) + (j - v j cos(u β / 2)) sin(ϕ), u, -1, 1, v, 0, 1)[br]23.E=(k cos(ϕ) - i sin(ϕ), 0, i cos(ϕ) + k sin(ϕ))[br]24.F=point(m)[br]25.G=Point(m)[br]26.n=Segment(F, E)[br]27.p=Segment(E, G)[br]28. Take text tool and write Net of cone.
Close

Information: Assignment 14:Net of cone