A cone is a three-dimentional geometric shape that tapers smoothly from a flat base to a point called the vertex. A cone is like a pyramid. But it has a circular base and curved face.
To Observe the net of cone.
Study the given figure, Drag the cone.[br]choose slide and click it.[br]Observe the net of cone. What do you notice about that?
1. Study the net of solid and which is the name of solid fromed by given net?[br]Ans:...[br]2. What is the name of base shape in this figure?[br]Ans:...[br][br]
1.Study the given figure. Which is the name of solids by given net?
2. Have you seen circular arc in net of cone?
Firstly we open GGB applet.[br]Then choose algebra , 2D and 3D perspectives.[br]1.Take a slider t.[br](minimum=0, maximum=1)[br]Use input bar and follow these rule and type given terms then choose enter.[br]2. f= PerpendicularLine((1, 0, 0), xOyPlane)[br]3.A= Point(f)[br]4.B= Intersect(xAxis, f)[br]5.C=Intersect(xAxis, yAxis)[br]6. g=Segment(C, A)[br]7.[math]\alpha[/math]=Angle(B, C, A)[br]8. a=Cone(B, A, 1)[br]9.A'= Rotate(A, t α, yAxis)[br]10. h= PerpendicularLine(A', xOyPlane)[br]11.D=Intersect(h, xOyPlane)[br]12.d=Distance(B, C)[br]13.[math]\beta[/math]=2(π d) / Distance(D, C)[br]14.C'= Rotate(C, β / 2, h)[br]15. C'_1=Rotate(C, (-β) / 2, h)[br]16.e=CircumcircularArc(C', C, C'_1[br]17.i=Distance(A', D)[br]18.j=Distance(D, C')[br]19.k=x(A')[br]20.[math]\phi[/math]=t π[br]21.m=Curve((k - j cos(u β / 2)) cos(ϕ), j sin(u β / 2), (k - j cos(u β / 2)) sin(ϕ), u, -1, 1)[br]22.l=Surface((k - v j cos(u β / 2)) cos(ϕ) - (1 - v) i sin(ϕ), v j sin(u β / 2), (1 - v) i cos(ϕ) + (j - v j cos(u β / 2)) sin(ϕ), u, -1, 1, v, 0, 1)[br]23.E=(k cos(ϕ) - i sin(ϕ), 0, i cos(ϕ) + k sin(ϕ))[br]24.F=point(m)[br]25.G=Point(m)[br]26.n=Segment(F, E)[br]27.p=Segment(E, G)[br]28. Take text tool and write Net of cone.