The function [math]y=2^x[/math] is the dotted graph. It is the "before" parent function.[br][br]The red graph is the "after" transformed function [math]y=a\cdot2^{b\left(x-c\right)}+d[/math][br][br]The asymptote of the "after" function follows it. [br][br]Reset returns to the parent function. [br][br]The y intercept A of the parent function maps to B on the transform graph. Use it's behavior to answer the questions.[br][br][br]Use these words: vertical translation, horizontal translation, vertical stretch/compression, x axis reflection, y axis reflection.
Reset[br][br]Make [b]a[/b] bigger. What happens?
Reset.[br][br]Make b = -1 so that the function is [math]y=2^{-x}[/math][br][br]Describe the tranformation.
Reset[br][br]Make a = -1 so that [math]y=-2^x[/math][br][br]Describe the transformation.
Reset[br][br]Change c so that [math]y=2^{\left(x-3\right)}[/math].[br][br]What is the transformation?
Reset[br][br]Change d so that [math]y=2^{\left(x\right)}+3[/math].[br][br]What is the transformation?
For the last question, what is the equation of the new horizontal aysmptote?
[img][/img][br]There are three functions graph here: [math]y=3^x[/math], [math]y=2^x[/math] and [math]y=4^x[/math][br][br]Which is which?