Polígonos

Anteriormente, vimos como construir polígonos através da Barra de Ferramentas e da Janela de Álgebra. Nessa seção exploraremos construções de diferentes modelos de polígonos [br][br][img][/img]
Polígono Regular
Formas de construir um Polígono Regular:[br][list][*]Com a ferramenta [icon]/images/ggb/toolbar/mode_regularpolygon.png[/icon] [i]Polígono Regular[/i] selecione 2 pontos na Janela de Visualização. Em seguida determine a quantidade de lados do polígono que deseja construir;[/*][*]O mesmo pode ser realizado pelo comando Polígono(<Ponto>, <Ponto>,<Número de vértices>)[/*][/list]
Polígono Rígido
Com a ferramenta ou comando de Polígono Rígido, você poderá constuir polígonos não deformáveis.[br][list][*] Para a construção com ferramenta [icon]/images/ggb/toolbar/mode_rigidpolygon.png[/icon] [i]Polígono Rígido[/i] utilize as mesmas instruções para a construção com a ferramenta [icon]/images/ggb/toolbar/mode_polygon.png[/icon] [i]Polígonos[/i][/*][/list]
Tente você mesmo
[list][*]Através da Barra de Ferramentas construa um quadrado a partir dos pontos A e B[/*][*]Através da Janela de Álgebra construa um hexágono rígido a partir dos pontos C e D[/*][*]Verifique o que ocorre quando se movimenta os pontos [/*][/list]
Polígono Semideformável
O Polígono Semideformável permite certas alterações em determinados pontos da construção [br] Para a construção com ferramenta [icon]/images/ggb/toolbar/mode_vectorpolygon.png[/icon] [i]Polígono Semideformável [/i]utilize as mesmas instruções para a construção com a ferramenta [icon]https://www.geogebra.org/images/ggb/toolbar/mode_polygon.png[/icon] [i]Polígonos[/i][br][i][br][/i]
Tente você mesmo
[list][*]Construa um Polígono Semideformável e explore as movimentações da construção [/*][/list]
Outros materiais
Materiais que podem contribuir com seu aprendizado:[br][url=https://www.geogebra.org/m/XUv5mXTm#material/ag5rf3un]Tutorial GeoGebra Teams: "Equilateral triangle" (Triângulo Equilátero)[/url][br][url=https://ogeogebra.com.br/site/videosreproduzir.php?idvideo=6]OGeoGebra - Vídeo "Polígonos"[/url][br][size=150][size=100][url=https://ogeogebra.com.br/site/textos/4.pdf]OGeoGebra - Texto "Polígonos"[/url][br][/size][/size][url=https://www.geogebra.org/m/XUv5mXTm#material/wfjw6sqb]Tutorial GeoGebra Teams: "Parallelogram" (Paralelogramo)[/url]

Information: Polígonos