IM Alg1.6.11 Lesson: Graphing from the Factored Form

[br][img][/img][br][br]Here is a graph of a function defined by [math]w(x)=(x+1.6)(x-2)[/math]. Three points on the graph are labeled.[br][br]Find the values of [math]a[/math], [math]b[/math], [math]c[/math], [math]d[/math], [math]e[/math], and [math]f[/math]. Be prepared to explain your reasoning.
[size=150]Consider two functions defined by [math]f(x)=x(x+4)[/math] and [math]g(x)=x(x-4)[/math].[br][br]Complete the table of values for each function. Then, determine the [math]x[/math]-intercepts and vertex of each graph. Be prepared to explain how you know.[/size]
[math]x[/math]-intercepts:[br]
Vertex:
[math]x[/math]-intercepts:[br]
Vertex:
Plot the points from the tables on the same coordinate plane. (Consider using different colors or markings for each set of points so you can tell them apart.)
Make a couple of observations about how the two graphs compare.
The functions f, g, and h are given. Predict the x-intercepts and the x-coordinate of the vertex of each function.
Use graphing technology to graph the functions f, g, and h. Use the graphs to check your predictions.
Sketch a graph that represents the expression [math]\left(x-7\right)\left(x+11\right)[/math] and that shows the [math]x[/math]-intercepts and the vertex. Think about how to find the [math]y[/math]-coordinate of the vertex. Be prepared to explain your reasoning.[br]
[size=150]The quadratic function [math]f[/math] is given by [math]f\left(x\right)=x^2+2x+6[/math].[/size][br][br]Find [math]f(-2)[/math] and [math]f(0)[/math].[br]
What is the [math]x[/math]-coordinate of the vertex of the graph of this quadratic function?[br]
Does the graph have any [math]x[/math]-intercepts? Explain or show how you know.[br]
Close

Information: IM Alg1.6.11 Lesson: Graphing from the Factored Form