IM Alg1.7.18 Lesson: Applying the Quadratic Formula (Part 2)
[size=150]Evaluate each expression for [math]a=9[/math], [math]b=-5[/math], and [math]c=-2[/math][br][/size][br][math]-b[/math]
[math]b^2[/math]
[math]b^2-4ac[/math]
[math]-b\pm\sqrt{a}[/math]
Here are four equations, followed by attempts to solve them using the quadratic formula.Each attempt contains at least one error.
[list][size=150][*]Solve 1–2 equations by using the quadratic formula.[br][/*][*]Then, find and describe the error(s) in the worked solutions of the same equations as the ones you solved.[/*][/size][/list][br][table][tr][td]Equation 1: [math]\quad2x^2+3=8x[/math][/td][td]Equation 2: [math]\quad x^2+3x=10[/math][/td][/tr][tr][td]Equation 3: [math]\quad9x^2-2x-1=0[/math][/td][td]Equation 4: [math]\quad x^2-10x+23=0[/math][/td][/tr][/table][size=150][br]Here are the worked solutions with errors:[/size][br][br][table][tr][td]Equation 1:[math]\quad2x^2+3=8x[/math][/td][td]Equation 2:[math]\quad x^2+3x=10[/math][/td][/tr][tr][td][math]a=2,\, b= \text-8,\, c=3[/math][br][br][math]x=\frac{\text{-}b \pm \sqrt{b^2-4ac}}{2a} \\[br]x=\frac{\text{-}(\text{-}8) \pm \sqrt{(\text{-}8)^2-4(2)(3)}}{2(2)}\\ [br]x=\frac{8 \pm \sqrt{64-24}}{4}\\[br]x=\frac{8 \pm \sqrt{40}}{4}\\[br]x =2 \pm \sqrt{10}[/math][br][/td][td][math]a=1,b=3,c=10[/math][br][br][math]x=\frac{\text{-}b \pm \sqrt{b^2-4ac}}{2a}\\ [br]x=\frac{\text{-}3 \pm \sqrt{3^2-4(1)(10)}}{2(1)}\\ [br]x=\frac{\text{-}3 \pm \sqrt{9-40}}{2}\\ [br]x=\frac{\text{-}3 \pm \sqrt{\text{-}31}}{2}\\ [br]\text{No solutions}[/math][br][/td][/tr][tr][td][br]Equation 3:[math]\quad9x^2-2x-1=0[/math][/td][td][br]Equation 4:[math]\quad x^2-10x+23=0[/math][/td][/tr][tr][td][math]a = 9,\,b = \text-2,\, c = \text-1[/math][br][br][br][math]x=\frac{\text{-}b \pm \sqrt{b^2-4ac}}{2a}\\ [br]x=\frac{2 \pm \sqrt{(\text{-}2)^2-4(9)(\text{-}1)}}{2}\\ [br]x=\frac{2 \pm \sqrt{4+36}}{2}\\[br]x=\frac{2 \pm \sqrt{40}}{2}[/math][/td][td][math]a = 1,\,b = \text-10,\, c = 23[/math][br][br][math]x=\frac{\text{-}b \pm \sqrt{b^2-4ac}}{2a}\\ [br]x=\frac{\text{-}10 \pm \sqrt{(\text{-}10)^2-4(1)(23)}}{2}\\ [br]x=\frac{\text{-}10 \pm \sqrt{\text{-}100-92}}{2}\\[br]x=\frac{\text{-}10 \pm \sqrt{\text{-}192}}{2}\\ [br]\text{No solutions}[/math][/td][/tr][/table]
[size=150]The equation [math]h\left(t\right)=2+30t-5t^2[/math] represents the height, as a function of time, of a pumpkin that was [br]catapulted up in the air. Height is measured in meters and time is measured in seconds.[/size][br][br][size=100]The pumpkin reached a maximum height of 47 meters. How many seconds after launch did that happen? Show your reasoning.[/size]
Suppose someone was unconvinced by your solution. Find another way (besides the steps you already took) to show your solution is correct.[br]
[size=150]The equation [math]r\left(p\right)=80p-p^2[/math] models the revenue a band expects to collect as a function of the price of one concert ticket. Ticket prices and revenues are in dollars.[br][/size][br][size=100]A band member says that a ticket price of either $15.50 or $74.50 would generate approximately $1,000 in revenue. Do you agree? Show your reasoning.[/size]
[size=150]Function [math]g[/math] is defined by the equation [math]g\left(t\right)=2+30t-5t^2-47[/math]. Its graph opens downward.[br][/size][br]Find the zeros of function [math]g[/math] without graphing. Show your reasoning.
Explain or show how the zeros you found can tell us the vertex of the graph of [math]g[/math].[br]
Study the expressions that define functions [math]g[/math] and [math]h[/math] (which defined the height of the pumpkin). Explain how the maximum of function [math]h[/math], once we know it, can tell us the maximum of [math]g[/math].[br]
IM Alg1.7.18 Practice: Applying the Quadratic Formula (Part 2)
[size=150]Mai and Jada are solving the equation [math]2x^2-7x=15[/math] using the quadratic formula but found different solutions.[/size][br][table][tr][td]Mai wrote:[/td][td]Jada wrote:[/td][/tr][tr][td][math]x = \frac{\text{-} 7 \pm \sqrt{7^2 - 4(2)(\text{-}15)}}{2(2)}\\ [br]x = \frac{\text{-} 7 \pm \sqrt{49 - (\text{-} 120)}}{4}\\ [br]x = \frac{\text{-} 7 \pm \sqrt{169}}{4}\\ [br]x = \frac{\text{-} 7 \pm 13}{4}\\ [br]x = \text{-} 5 \quad \text{ or } \quad x = \frac32[/math][/td][td][math]x = \frac{\text{-} (\text{-} 7) \pm \sqrt{\text{-} 7^2 - 4(2)(\text{-}15)}}{2(2)}\\ [br]x = \frac{7 \pm \sqrt{\text{-} 49 - (\text{-} 120)}}{4}\\ [br]x = \frac{7 \pm \sqrt{71} }{4}[/math][/td][/tr][/table][br]If this equation is written in standard form, [math]ax^2+bx+c=0[/math], what are the values of [math]a[/math], [math]b[/math], and [math]c[/math]?
Do you agree with either of them? Explain your reasoning.[br]
[size=150]The equation [math]h\left(t\right)=-16t^2+80t+64[/math] represents the height, in feet, of a potato [math]t[/math] seconds after it was launched from a mechanical device.[/size][br][br]Write an equation that would allow us to find the time the potato hits the ground.
Solve the equation without graphing. Show your reasoning.
[size=150]Priya found [math]x=3[/math] and [math]x=-1[/math] as solutions to [math]3x^2-6x-9=0[/math]. [/size][size=100][size=150]Is she correct? Show how you know. [/size][/size]
[size=150]Lin says she can tell that [math]25x^2+40x+16[/math] and [math]49x^2-112x+64[/math] are perfect squares because each expression has the following characteristics, which she saw in other perfect squares in standard form:[/size][list][size=150][*]The first term is a perfect square. The last term is also a perfect square.[/*][*]If we multiply a square root of the first term and a square root of the last term and then double the product, the result is the middle term.[/*][/size][/list][size=100]Show that each expression has the characteristics Lin described.[br][/size]
Write each expression in factored form.
[size=150]What are the solutions to the equation [math]2x^2-5x-1=0[/math]?[/size]
Solve each equation by rewriting the quadratic expression in factored form and using the zero product property, or by completing the square. Then, check if your solutions are correct by using the quadratic formula.
[math]x^2+11x+24=0[/math]
[math]4x^2+20x+25=0[/math]
[math]x^2+8x=5[/math]
Here are the graphs of three equations. Match each graph with the appropriate equation.
[img][/img][br][math]y=10\left(\frac{2}{3}\right)^x[/math]
[math]y=10\left(\frac{1}{4}\right)^x[/math]
[math]y=10\left(\frac{3}{5}\right)^x[/math]
[size=150]The function [math]f[/math] is defined by [math]f\left(x\right)=\left(x+1\right)\left(x+6\right)[/math].[/size][br][br]What are the [math]x[/math]-intercepts of the graph of [math]f[/math]?
Find the coordinates of the vertex of the graph of [math]f[/math]. Show your reasoning.[br]