Kružnice opsanou i vepsanou můžeme zkoumat u všech mnohoúhelníků.
Kružnice vepsaná se dotýká všech stran mnohoúhelníku. To znamená, že každá strana mnohoúhelníku musí být tečnou kružnice vepsané. Na
kružnici opsané leží všechny vrcholy mnohoúhelníku. Zatímco každému trojúhelníku můžeme vždy kružnici vepsat i opsat, pro obecné čtyřuhelníky většinou kružnice takových vlastností neexistují.
Čtverec je krásný, symetrický útvar a i díky této symetrii má kružnice opsané i vepsané. Středy těchto kružnic jsou ve středu čtverce. Dopře si prohlédněte animaci a promyslete, jak určíte poloměry kružnice vepsané a kružnice opsané. Pokuste se nastavit hodnotu posuvníku
r právě pro hodnotu vepsané kružnice. Jaké má tečna kružnice vlastnosti?
Zvětšete applet na celou obrazovku. Nezdá se vám, že jsou strany čtverce pod tíhou množiny soustředných kružnic trochu prohnuté? Pokuste se zobrazit tak, aby byla
Ehrensteinova iluze co možná nejnápadnější. Obrázek vytiskněte a ověřte pravítkem přímost stran.