QUESTION 1. Use the coordinate grid to draw straight lines with lengths of : (5 marks)[br]a. 4 cm[br]b. 4.3 cm[br]c. 2.5 cm[br]d. 0.7 cm[br]e. 36 mm
Use the coordinate grid and draw two parallel lines that are : (6 marks) [br]a. 45 mm long and 3 cm apart.[br]b. 5 cm long and 2.5 cm apart.
Draw the line WX 10 cm long. Mark the point Y on the line WX so that Y is 3 cm from W. Mark the point Z on the line WX so that Z is 4.5 cm from X. Draw two lines (the lengths are 4 cm), one from Y and one from Z, that are both perpendicular to the line WX. (4 marks)[br]
Draw each of the triangles accurately. (6 marks)[br][img width=576,height=321]https://lh4.googleusercontent.com/izG-2KxO2t4Bd8dhrp7eiW5XV9R0juElainuK9ZCnH8UgJQkGSJ6SmYUFFl_zfpUpB0BYg_jmGiYrHl2pK2S3BRb61StfCY0M9rzWgfe-gF9Vw4236Ytq0OjCDZFcC9KXKrY1EKG[/img][br][img width=576,height=321]https://lh4.googleusercontent.com/zTOg7gwYqFP_LpZFYdCUVyAkqAgXkA4az1oHsXKMmKtfDfqa1tdYyhdBZwbiUaWHWyjaDDfBuMMs60Zi_wKjNf3OhF2TXw-nAx5iI4uo7VH0U-X8nk4owKjQb7dtO0jrxXWf-gce[/img]
Answer the following questions. (5 marks) [br][img width=527,height=321]https://lh6.googleusercontent.com/pp8m7MxMkQY3_ldReBu1y-UPPsRNSnV3JBVslYRRM9IaoPCgrzbnH5h4Gm-KmUt7lkfBwXBXhF7pSz61VuXQJ-Q0OurcyieVoicwd49WuHVWeZhEowRmgxlXQGwgPVK7vr3Dy4Wt[/img][br][br]a. Write down the coordinates of D, E, F and G.[br]b. M is the midpoint of DE. Work out the coordinates of M.
The points (-3, 2), (1,2), and (1,-2)are three corners of a square. Plot the points and draw the square on this coordinate grid and work out the coordinates of the fourth corner of the square. (3 marks)
Work out the equation of the line through each pair of points. (5 marks)[br]a. A and B [br]b. B and C[br]c. C and D[br]d. D and E[br]e. E and F [br][br][img width=545,height=321]https://lh6.googleusercontent.com/DzMDdNs_WolJ7s_XuEh3yBLWcOoJ7mrjmWCJH_i2AR5sSUHRis1N5GJ63raa0xJZGO2q8HFyHCA7tU4rvi50_bcNPXDntokkCL5zcMj_oerZNSsMWm8k_tEmRBGdHyERD8KAYtOf[/img]
Copy and complete the table of values for y=x + 2. Using the table of values, draw the graph of y=x + 2. (5 marks) [br][img][/img][br]
Copy and complete the table of values for y=2x. Using the table of values, draw the graph of y=2x. (5 marks) [br][img][/img][br][br]