Thus line of reflection pass through the origin the transformation is linear and could be expressed by 2 x 2 matrix. [br]1. Reflect base vectors e1, e2.[br]2. Images e1' and e2' are columns of the matrix of linear transformation.[br]3. Check the representation by means of the picture "lion".
Method 1 (Experimental): Move with point [color=#0000ff][i]B[/i][/color] to get location, where[color=#0000ff][i] B = B'[/i][/color]. Discover all such position. [br]Method 2 (Algebraic): Matrix equation of transformation[color=#0000ff][i] X' = MX t[/i][/color]ogether with condition for fixed points [i][color=#0000ff]X' = X[/color][/i] give equation [color=#0000ff][i]X = MX[/i][/color] for unknown fixed point [color=#0000ff][i]X[/i][/color]. Rearrangement in homogenous form:[br][math]\left(M-E\right)X=o[/math][br]could be solved by Gauss elimination. GeoGebra command [code]ReducedRowEchelonForm(matrix)[/code][br] of the matrix [color=#0000ff]([i]M - E[/i])[/color] returns the equivalent echelon form. [br]Matrix for reflection in line [i][color=#0000ff]OA[/color][/i], [color=#0000ff]O=(0,0), A =(1, 2)[/color] is [code]M = {{-0.6, 0.8},{0.8, 0.6}}[/code], thus[center][br][img][/img][br][/center]Using back-substitution, unknown coordinates [color=#0000ff][i]x, y[/i][/color] can be solved for.[br][color=#0000ff][i]x - 0.5 y = 0[/i][/color], hence [color=#0000ff][i]y = 2x[/i][/color].
Method 1 (experimental): Move with dynamic points [color=#0000ff][i]B, C[/i][/color] and investigate the relationship of line [color=#0000ff][i]BC[/i][/color] and its image [color=#0000ff][i]B'C'[/i][/color]. We look for position where line [color=#0000ff][i]BC[/i][/color] is parallel with [i][color=#0000ff]B'C'[/color][/i].[br][br]Method 2 (algebraic): Fixed direction (=eigenvectors) [color=#0000ff][i]X[/i][/color] fulfils equation [i][color=#0000ff]X' = λX[/color][/i] for some [color=#0000ff]λ[/color], i.e. we should find coefficient [color=#0000ff]λ[/color] for which [i][color=#0000ff]λX = MX[/color][/i] has nonzero solution [color=#0000ff][i]X[/i][/color]. Rearrangement in homogenous form [color=#0000ff](M-λE)X = o[/color] gives the necessary condition for nonzero solution: [center][color=#0000ff]det(M-λE) = 0[/color][br][img][/img][/center] Change the value of slider [i][color=#0000ff]λ[/color][/i]. Only two values induce singular matrix [color=#0000ff](M-λE)[/color].[list][*] [i][color=#0000ff]λ=1[/color][/i] gives direction vector of mirror line [color=#0000ff](M-E)X = o; x + 2y = 0, X1=(-2t, t)[/color][/*][*] [i][color=#0000ff]λ=-1[/color][/i] gives f normal vector of mirror line [color=#0000ff](M+E)X = o; x - 0.5y = 0, X2 = (t, 2t) [/color][br][/*][/list]