[size=200][b][color=#ff7700]Problem 1[/color][/b][/size]
[math]\begin{cases} 3x-y=17 \\ x+4y=10 \\ \end{cases}[/math][br][br]Solve the system by graphing the equations (by hand or using technology).[br]
Explain how you could tell, without graphing, that there is only one solution to the system.[br]
[size=200][b][color=#ff7700]Problem 2[/color][/b][/size]
[math]\begin{cases} y = \frac45x - 3 \\ y = \frac45x + 1 \end{cases}[/math][br][br]Without graphing, determine how many solutions you would expect this system of equations to have. Explain your reasoning.
Try solving the system of equations algebraically and describe the result that you get. Does it match your prediction?[br]
[size=200][b][color=#ff7700]Problem 3[/color][/b][/size]
[math]\displaystyle \begin{cases} 9x-3y=\text-6\\ 5y=15x+10\\ \end{cases}[/math]
[size=200][b][color=#ff7700]Problem 4[/color][/b][/size]
[size=150]Select [b]all [/b]systems that have no solutions.[/size]