Estimate parameter [color=#1e84cc][i]a[/i][/color] so that the matrix [color=#0000ff][i]M[/i][/color] represents reflection in line. [br][center][/center][center][img][/img][/center]
1. method: Rotation is a direct isometry, hence |A| = 1, i.e. [math]a^2+\frac{1}{4}=1\Longrightarrow a=\pm\frac{\sqrt{3}}{2}[/math].[br]2. method (experimental): Use tool slider[icon]/images/ggb/toolbar/mode_slider.png[/icon]for unknown parameter [color=#1e84cc][i]a[/i][/color]. Define one parameter family of matrices M([color=#1e84cc][i]a[/i][/color]). [br][code]M ={{-0.5,a},{a,0.5}}[br][br][/code][br]Draw arbitrary object [color=#1e84cc][i]B[/i][/color] (point, segment or picture) and its image [color=#1e84cc][i]B[/i]'[/color] - GeoGebra command [code]ApplyMatrix(matrix,object)[/code]. Observe the effect of changing the slider [color=#1e84cc][i]a[/i][/color] and estimate correct value for parameter [color=#1e84cc][i]a[/i][/color]. [br][br]Experimental method is efficient for determination of fixed point and directions. Compare the position of arbitrary movable point [i][color=#1e84cc]B[/color][/i] and its image [color=#1e84cc][i]B'[/i][/color]. Find out the location where points coincide, [i][color=#1e84cc] B[/color][/i] = [color=#1e84cc][i]B[/i]'[/color]. There is the fixed point of transformation. The same method applyed on line [color=#1e84cc][i]f[/i][/color] gives you fixed direction. You should find the position where [i][color=#1e84cc]f[/color][/i] is parallel with image [color=#1e84cc][i]f'[/i][/color].[br]