Introduction to Double Integration

Properties of Double Integrals
[size=100][size=150]Let [math]f[/math] and [math]g[/math] be continuos over a closed, bounded plane resgion, [math]R[/math], and let [math]c[/math][/size][/size] be a constant.[br][img][/img][br][img][/img][img][/img][br][img][/img][br][img][/img][br][img][/img][br][img][/img][br]where [math]R[/math] is the union of two non overlapping sub regions [math]R_1[/math] and [math]R_2[/math].
[size=200][b]Area of Region[br][/b][img][/img][size=85][size=100][size=150][br]where [math]dA[/math][/size][/size][/size][/size] is denoted as [math]dA=dxdy[/math] or [math]dA=dydx[/math].
[size=200][b]Volume of Region[br][img][/img][br][/b][size=150]where [math]dA[/math] is denoted as [math]dA=dxdy[/math] or [math]dA=dydx[/math].[/size][/size]

Information: Introduction to Double Integration