Angle Bisector Definition (I)

[color=#000000]In the applet below, the [/color][b][color=#1e84cc]blue ray[/color][/b][color=#000000] is said to be an [/color][color=#1e84cc][b]angle bisector[/b][/color][color=#000000] of [/color][b]angle [i]BAC[/i][/b][color=#000000]. [br][br]The [/color][b]gray slider[/b][color=#000000] adjusts the entire measure of [/color][b]angle [i]BAC[/i][/b][color=#000000]. [br][/color][color=#000000]The [b]black slider[/b] dynamically illustrates what it means for a [/color][color=#1e84cc][b]ray[/b][/color][color=#000000] to [/color][color=#1e84cc][b]bisect[/b][/color][color=#000000] an angle. [br][br][/color][color=#000000]Interact with this applet for a few minutes. [br]Then, answer the questions that follow. [/color]
1.
[color=#000000]From what you've seen, describe what it means for a [/color][color=#1e84cc][b]ray[/b][/color][color=#000000] to [/color][color=#1e84cc][b]bisect[/b][/color][color=#000000] an angle. [br][/color][b][color=#ff00ff]In your description, avoid using the words or phrases "[i]middle", "down-the-middle", "half"[/i]. [/color][/b]
2.
[color=#000000]Use the [b]Point on Object[/b] tool to plot a point F [/color][color=#1e84cc]anywhere on the [b]angle bisector[/b][/color][color=#000000]. [br]Use the [b]Angle[/b] tool to find and display the measure of angle [/color][i]BAF[/i][color=#000000] and [/color][i]CAF[/i][color=#000000]. [br][/color][color=#000000][br]How do these results reflect (i.e. illustrate) your response to (1)? [/color]
Close

Information: Angle Bisector Definition (I)