Probability View

Here is one example of the Statistics capabilities.
In a big city, a reading test was conducted with the entire student population (mean score of 100 points and a standard deviation of 12 points). In a particular school, a sample of 55 students received a mean score of only 96 points. [br][br]Is the mean score of the sample significantly lower than the mean score of the whole student population?
Try it yourself...
Instructions
[table][tr][td][size=100]1.[br][/size][/td][td][size=100]Open the tab [i]Statistics[/i].[br][/size][/td][/tr][tr][td][size=100]2.[br][/size][/td][td][size=100]Choose the [i]Z Test of a Mean[/i] as your preferred test from the drop-down list.[br][/size][/td][/tr][tr][td][size=100]3.[br][/size][/td][td][size=100]Enter the Null Hypothesis [math]\mu=100[/math], which is the mean of the entire student population.[br][/size][/td][/tr][tr][td][size=100]4. [/size][/td][td]Select the [i]Alternative Hypothesis[/i] option [math]<[/math].[/td][/tr][tr][td][size=100]5.[/size][/td][td]In the [i]Sample [/i]section, enter [math]Mean=96[/math],  standard deviation [math]\sigma=12[/math], and sample size [math]N = 55[/math].[/td][/tr][tr][td][size=100]6.[/size][/td][td]Check the [i]Result[/i] section in order to interpret the relevant parameter values for your statistical test.[br][/td][/tr][tr][td][br][/td][td][u]Note[/u]: GeoGebra automatically calculates the standard error of the mean ([i]SE[/i]), the z-score ([i]Z[/i]), and the corresponding probability based on a normal distribution ([i]P[/i]).[/td][/tr][/table]

Information: Probability View