Partial derivatives and Tangent plane

This simulation shows the geometric interpretation of the partial derivatives of [i]f[/i]([i]x,y[/i]) at point A in [math]\mathbb{R}^2[/math]. It also shows the tangent plane at that point.[br][br]Things to try:                [list][*]Drag the point A in the xy-plane or type specific values on the boxes.              [/*][*]Select the object you want to show: Tangent plane, f[sub]x[/sub] or f[sub]y[/sub].           [/*][*]Use right click and drag the mouse to rotate the 3D view or click on View button.[/*][/list]

Line integral for planar curves

Vector Fields in 2D

Instructions:
1. Change the components of the vector field by typing, for example:[br][br] [math]F_1=[/math] x^2sin(y) , [math]F_2=[/math] sqrt(y^2+x)exp(x/y)[br][br]2. Change the [b]Scale[/b] or [b]Vectors density[/b] to provide a better visualisation of the vector field. [br]3.[b] Zoom In[/b] or [b]Out[/b] (or drag the plane) to change the domain.

Basic examples of velocity fields

Parabolic transformation

Instructions:
A transformation is defined by the equations [math]x=u^2-v^2[/math] and [math]y=2uv[/math]. [br][br]1. Drag the [color=#3d85c6]BLUE[/color] point defined on the boundary of the square (left-side). Observe the effect of the transformation on the right side.[br][br]2. Drag the [color=#ff0000]RED[/color] point to change the position of the square. Observe the effect of the transformation on the right side.

Information