IM Alg2.2.11 Lesson: Finding Intersections

Mentally identify a point where the graphs of the two functions intersect, if one exists.
[math]f(x)=x[/math] and [math]g(x)=3[/math]
[math]j(x)=(x+3)(x-3)[/math] and [math]k(x)=0[/math]
[math]m(x)=(x+3)(x-3)[/math] and [math]n(x)=(x-3)[/math]
[math]p(x)=(x+5)(x-5)[/math] and [math]q(x)=(x+3)(x-3)[/math]
For each pair of polynomials given, find all points of intersection of their graphs.
[math]c(x)=x^2-7[/math] and [math]d(x)=2[/math]
[math]f(x)=(x+7)(x-4)[/math] and [math]g(x)=x-4[/math]
[math]m(x)=(x+7)(x-4)[/math] and [math]n(x)=(2x+5)(x-4)[/math]
[math]p(x)=(x+1)(x-8)[/math] and [math]q(x)=(x+2)(x-4)[/math]
Find all points of intersection of the graphs of the equations
[math]p(x)=(2x+3)(x-5)[/math] and [math]q(x)=(x+5)(x+1)(x-3)[/math].
Use graphing technology to check your solutions.
[size=150]Consider the functions [math]p(x)=5x^3+6x^2+4x[/math]  and [math]q(x)=5640[/math].[/size][br][br]Use graphing technology to find a value of [math]x[/math] that makes [math]p(x)=q(x)[/math] true.[br]
For the [math]x[/math]-value at the point of intersection, what can you say about the value of [math]5x^3+6x^2+4x-5640[/math]?[br]
What does your answer suggest is a possible factor of [math]5x^3+6x^2+4x-5640[/math]?[br]
Write your own polynomial [math]m(x)[/math] of degree 3 or higher.[br]
Use graphing technology to estimate the values of [math]x[/math] that make [math]m(x)=q(x)[/math] true.[br]

IM Alg2.2.11 Practice: Finding Intersections

What are the points of intersection between the graphs of the functions [math]f(x)=x^2(x+1)[/math] and [math]g(x)=x+1[/math]?
Select [b]all[/b] the points of intersection between the graphs of the functions [math]f(x)=(x+5)(x-2)[/math] and [math]g(x)=(2x+1)(x-2)[/math].
What are the solutions to the equation [math](x-3)(x+5)=\text{-}15[/math]?
What are the [math]x[/math]-intercepts of the graph of [math]y=(5x+7)(2x-1)(x-4[/math])?
Which polynomial function’s graph is shown here?[br][br][img][/img]
Draw a rough sketch of the graph of
The graph of a polynomial function f is shown.
[img][/img][br]Is the degree of the polynomial odd or even? Explain how you know.[br]
What is the constant term of the polynomial?[br]

Information