[size=85] A Truncation is an operation applied to a polyhedron. Using this applet, you can explore the dividing sides of a polygon into 3 unequal parts: t, 1-2*t, t where 0<t<0.5. I have used this method to construct truncated polyhedra.[br] In the following applets, you can explore polyhedra at various stages of truncation.[br][url=https://www.geogebra.org/m/a6w4y8m8]Truncated Tetrahedron[/url]. [br][url=https://www.geogebra.org/m/peus7qcy]Truncated Cube.[/url] [br][url=https://www.geogebra.org/m/eusfhczd]Truncated Octahedron.[/url] [br][url=https://www.geogebra.org/m/uyt4cfxw]Truncated Dodecahedron.[/url] [br][url=https://www.geogebra.org/m/ntknhpec]Truncated Icosahedron.[/url] [br][url=https://www.geogebra.org/m/xhwfp8pb]Truncated square antiprism[/url] [br][url=https://www.geogebra.org/m/rf39hzpw]Truncated Cuboctahedron.[/url] [br][url=https://www.geogebra.org/m/ntknhpec]Truncated Icosidodecahedron.[/url] [br][url=https://www.geogebra.org/m/m36m3dkt]Truncated Biscribed Pentakis Dodecahedron.[/url] [br] Drag the slider [b]t[/b] to show the truncation the sides of the n-gon. [/size]