IM Geo.6.3 Lesson: Types of Transformations

[size=150]Point [math]B[/math] was transformed using the coordinate rule [math]\left(x,y\right)\longrightarrow\left(3x,3y\right)[/math].[br][/size][br]Add these auxiliary points and lines to create 2 right triangles: Label the origin [math]P[/math]. Plot points [math]M=\left(2,0\right)[/math] and [math]N=\left(6,0\right)[/math]. Draw segments [math]PB'[/math], [math]MB[/math], and [math]NB'[/math].[br]
How do triangles [math]PMB[/math] and [math]PNB'[/math] compare? How do you know?[br]
What must be true about the ratio [math]PB:PB'[/math]?[br]
Match each image to its rule.
Then, for each rule, decide whether it takes the original figure to a congruent figure, a similar figure, or neither. Explain or show your reasoning.
[math](x,y)\rightarrow\left(\frac{x}{2},\frac{y}{2}\right)[/math]
[math](x,y) \rightarrow (y, \text-x)[br][/math]
[math](x,y) \rightarrow (\text-2x, y)[/math]
[math](x,y)\rightarrow(x-4,y-3)[/math]
Here is triangle A. Reflect triangle A across the line x=2.
Write a single rule that reflects triangle [math]A[/math] across the line [math]x=2[/math].[br]
Write a rule that will transform triangle [math]ABC[/math] to triangle [math]A'B'C'[/math].[br]
Are [math]ABC[/math] and [math]A'B'C'[/math] congruent? Similar? Neither? Explain how you know.[br]
Write a rule that will transform triangle [math]DEF[/math] to triangle [math]D'E'F'[/math].[br]
Are [math]DEF[/math] and [math]D'E'F'[/math] congruent? Similar? Neither? Explain how you know.[br]
Close

Information: IM Geo.6.3 Lesson: Types of Transformations