V=24 Rhombicuboctahedron. Images: A critical points scheme for Generating uniformly distributed points on a sphere

[size=85]A system of points on a sphere S of radius R “induces” on the sphere S0 of radius R0 three different sets of points, which are [color=#93c47d]geometric medians (GM)[/color] -local [color=#ff0000]maxima[/color], [color=#6d9eeb]minima[/color] and [color=#38761d]saddle[/color] points sum of distance function f(x). The angular coordinates of the spherical distribution of a system of points -[color=#0000ff] local minima[/color] coincide with the original system of points.[/size]
[size=85][color=#333333]Distribution of points Pi[/color][color=#ff0000], [color=#5b0f00]test Point[/color], [color=#ff0000]Max[/color]/[color=#0000ff]min[/color]/[color=#38761d]saddle[/color] -[color=#333333]Critical points[/color] on a sphere. Vectors ∇f and ∇g at these points.[br]max:[/color] hexoctahedron[br][color=#0000ff]min:[/color] Rhombicuboctahedron [br][color=#6aa84f]sad:[/color] ?[/size]
[size=85][color=#333333]Distribution of points Pi[/color][color=#ff0000], [color=#5b0f00]test Point[/color], [color=#ff0000]Max[/color]/[color=#0000ff]min[/color]/[color=#38761d]saddle[/color] -[color=#333333]Critical points[/color] on a sphere. Vectors ∇f and ∇g at these points.[br]max:[/color] hexoctahedron[br][color=#0000ff]min:[/color] Rhombicuboctahedron [br][color=#6aa84f]sad:[/color] ?[/size]
Two-variable  function f(φ,θ) over a rectangular region: - π ≤φ ≤ π; -π/2≤θ≤π/2.[br][br]
Intersection points of implicit functions over a rectangular region: - π ≤φ ≤ π; -π/2≤θ≤π/2.[br]
Isolines and Intersection points of implicit functions over a rectangular region: - π ≤φ ≤ π; -π/2≤θ≤π/2..[br]
Critical Points

Information: V=24 Rhombicuboctahedron. Images: A critical points scheme for Generating uniformly distributed points on a sphere