[math]f\left(x\right)=\left(x+3\right)\left(x-4\right)[/math] and [math]g\left(x\right)=\frac{1}{3}\left(x+3\right)\left(x-4\right)[/math]. The graphs of each are shown here.[br][img][/img][br]Which graph represents which polynomial function? Explain how you know.[br]
[math]f\left(x\right)=\left(x+1\right)\left(x+3\right)\left(x-4\right)[/math]
[math]g\left(x\right)=3\left(x+1\right)\left(x+3\right)\left(x-4\right)[/math]
[size=150]Tyler incorrectly says that the constant term of [math](x+4)(x-4)[/math] is zero.[/size][br][br]What is the correct constant term?[br]
What is Tyler’s mistake? Explain your reasoning.[br]
Which of these standard form equations is equivalent to [math]\left(x+1\right)\left(x-2\right)\left(x+4\right)\left(3x+7\right)[/math]?
Select [b]all [/b]polynomial expressions that are equivalent to [math]5x^3+7x-4x^2+5[/math].
Select [b]all [/b]the points which are relative minimums of this graph of a polynomial function.[br][br][img][/img]
What are the [math]x[/math]-intercepts of the graph of [math]y=\left(3x+8\right)\left(5x-3\right)\left(x-1\right)[/math]?