IM Geo.7.2 Practice: Inscribed Angles

The measure of angle AOB is 56 degrees.
What is the measure of angle [math]ACB[/math]?
[size=150]Explain the difference between central and inscribed angles. [/size]
[size=150]What is the measure of the arc from [math]A[/math] to [math]B[/math] that does not pass through [math]C[/math]?[/size][br][img][/img]
[size=150]Find the values of [math]x[/math], [math]y[/math], and [math]z[/math].[/size][br][img][/img]
Match the vocabulary term with the label.
[img][/img][br]chord that is not a diameter
diameter
radius
central angle
[size=150]T[/size][size=150]riangle [math]ABC[/math] has vertices at [math]\left(-4,0\right),\left(-2,12\right)[/math] and [math]\left(12,0\right)[/math]. What is the point of intersection of its medians?[/size]
[size=150]The rule [math]\left(x,y\right)\rightarrow\left(y,-x\right)[/math] takes a line to a perpendicular line. Select another rule that takes a line to a perpendicular line. [/size]
Close

Information: IM Geo.7.2 Practice: Inscribed Angles